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Abstract. The phase diagram of a three-dimensional Ising model in a magnetic field with
commensuraie and incommensurate phases is studied al low temperature within a mean-
field approximation. This analysis was motivated by problems in condensed matier physics
concerning, for example, bipotaronic charge-density waves, neutral-to-ionic transitions in
organic salts, staging in intercalation compounds, magneto-glastic materials, stacking in
discotic liquid crystals, ete. The interactions between the Ising spins are long-rahge
exponentially decaying, and arc antiferromagncetic in one direction and ferromagnetic in
the perpendicular planes.

The ground state of this model is known 1o be a commensurate or an incommensurate
structure with a wavevector thal varics as a complete devil's staircase as a [unction of
the magnetic field. Provided some conditions hold on the model parameters, we prove
rigorously that, for small enough temperature, the mean-field variational form of the
model still yields a minimum that is 2 commensurate or an incommensurate structure,
the wavevector of which also varies as a complete devil's staircase as a function of the
magnetic field or temperature.

The explicit computation of the phase diagram is done by using two methods that
are consistent with one another: the first is based on the numerical analysis of a transfer
matrix at zero degrees Kelvin; the second is based on an approximation valid at low
temperature, which allows one ta map this mean-field mode! onto a Frenkel-Kontorova
model. This second method yields an analylical expression for the transition lines of the
phase diagram.

1. Introduction

This paper is devoted to the mean-field analysis at low temperature of the phase
diagram of an anisotropic Ising model in 2 magnetic field. Unlike the well known
ANNNI model, this model can exhibit commensurate and truly incommensurate ground
states, Our main purpose is to obtain some useful qualitative information on the
thermal behaviour and the wavevector variation at low temperature of non-analytic
incommensurate phases.

Before introducing the model, let us first recall the characteristic properties of
non-analytic incommensurate structures. They are characterized by the fact that

|| Laboratoire Commun CEA-CNRS.

0953-3984/92/275921 +26804.50 © 1992 10P Publishing Ltd 5921



5922 L M Floria et al

their microscopic configurations are discontinuous functions of their phase. As a
physical consequence, the incommensurate modulations of these structures are intrin-
sically pinned to the lattice and are phase-defectible (i.e. they admit phase defects
as metastable configurations; analytical incommensurate structures being, on the con-
trary, undefectible). Another consequence is that the phonon spectrum associated
with the phase fAuctuations (phason) exhibits a strictly non-zero gap. At low tem-
perature the relevant excitations that describe the thermodynamics of the system are
not these phonon modes but are those metastable configurations which correspond to
random distributions of phase defects. The thermal fluctuations of these metastable
configurations contribute to the dynamical response {unction as a central peak with a
narrow width in frequency.

It has been shown that the non-analytic incommensurate phases are well described
by an effective Hamiltonian defined on discrete variables instead of continuous atomic
coordinates. These discrete variables could be, for example, integers (as in the
Frenkel-Kontorova model at d > 2 dimensions [1]) but can often be reduced to Ising
(or pseudo-spin} variables as for the one-dimensional (1D) Frenkel-Kontorova model
and for the bipolaronic structures of many coupled clectron-phonon models [2].
Within a general framework, the nature of the site variable (Ising spin, integer or else),
which has to be used to describe the metastable defect configurations, is determined
by the coding sequences, which have to be used at the ‘anti-integrable’ limit of the
considered model [3]. This justifics very generally why Ising spin Hamiltonians are
appropriate for describing non-analytic incommensurate phases.

The effective Ising Hamiltonian that describes the thermodynamical behaviour of
the non-anaiytic incommensurate phases at low temperature depends sharply on the
initial model. It is gencrally quite complex, involving not only pair interactions but
three-spin, four-spin, ... interactions, which become more and more essential when
approaching the transition by breaking of analyticity (TBA) [4]. Sufliciently far away
from the TBA, we can drop the multi-spin interactions beyond order 2, There are
also special choices of the model for incommensurate structures, where an effec-
tive Hamiltonian with only onc- and two-spin inteéractions can be explicitly obtained.
However, these models are somewhat pathological at low coupling since they cannot
exhibit any analytic incommensurate phase and thus any TBA. This situation occurs
for example in the 1D Frenkel-Kontorova model with a piecewise parabolic periodic
potential and harmonic springs [5]. We then obtain a Hamiltonian that is an Ising
model with exponentially decaying lorg-range interactions with an external magnetic
field. The thermodynamical properties of this model were studied in detail in [6].
However, although this 1D model exhibits a hierarchy of crossover temperatures when
T goes to zero, it does not exhibit any true phase transition with ordered phases. The
crossover temperature corresponds only to smooth changes in the thermodynamical
behaviour and in the spin corrclations.

In this paper, we analyse the phase diagram of a thrce-dimensional (3D) version
of this 1p model. This 3D mode] consists of 1D chains with the same Hamiltonian
as in [6]. We introduce phenomenologically a ferromagnctic coupling J between the
chains, which might not be realistic in many physical situations but is simpler in a first
approach of the 3D case. The main advantage of this choice is that the mean-field
variational form of this 3D mode! easily reduces to that of a (D model, Nevertheless,
the results obtained should shed some light on the possible behaviour of 3D models.
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This Ising Hamiltonian is

H= Z Z J(n)S; 3 Sign; ) — E.S*,-,jsi‘ﬂs ~HS;; (L1)

iLJ \{rn>0) L]

where (¢,7) labels a site in a 3D cubic lattice (¢ for the z direction and j = (J,,J,)
for the perpendicular directions) and § is a vector in the zy plane connecting in-plane
interacting sites (which we will assume to be ncarcst neighbours); H is the external
magnetic field, J(> 0) is the interaction constant within the zy planes, and J(n)
is the (decaying) interaction constant between nth neighbouring pseudo-spins in the
chains along the z direction. For convenience, we choose for J{n} the explicit form

J(n) = Dyl . (1.2)

with D and 7 (0 € n £ 1) some constants.

A particularly important issue, regarding qualitative physical predictions based on
the analysis of this model, concerns the bipolaronic charge-density waves {(BCDW). We
predict a significant thermali variation for the BCDW wavevector (in agreement with
the experiments on real charge-density waves (CDWs)) unlike for analytic CDWs where
the wavevector variation should be non-observablic experimentally. This issue will be
discussed in detail in a forthcoming paper.

In section 2, we describe some physical situations where, according to condensed
matter literature, similar models appear. We will mention there some other models
which, although different, can be shown to be equivalent to (1.1), regarding the
mean-field properties.

In section 3, the proof of those¢ equivalences yields a rigorous justification of the
existence of a devil’s staircase phase diagram at finite temperature. This result, which
extends the zero-temperature characterization of the mode] obtained by Aubry [5], is
proved under certain conditions on the model parameters.

In section 4, we explain a numerical technique based on the method of effective
potentials (or zero-degree transfer matrix) [7], which aliows the determination of
the phase diagram of the model with no restrictions on the parameter range and
arbitrary precision. We show there a scctor of the phase diagram for some particular
values of the model parameters. This numerical method allows a visualization of the
transition mechanisms which destroy the devil’s staircase scenario well outside the
bounds determined in the previous section.

Section 5 is devoted to the derivation of an analytical approximation, valid for
low temperatures, which gives closed expressions for some quantities of interest in
some specific applications of the model, and the last section contains a summary of
results and some concluding remarks regarding the applications.

2. Related models in physical systems

In a recent series of papers, a new theoretical interpretation of charge-density wave
(CDW) systems [4, 2] has been developed in terms of bipolarons. The reader interested
in the complete details of the theory is referred to these publications. We will briefly
outline the derivation, within this theory, of the anisotropic long-range Ising model.
The bipolaronic theory has been developed in detail for the adiabatic Holstein
model [8], but could be extended to many other models. We essentially assume that:
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(i) The atoms are classical particles (adiabatic approximation), i.e. the quantum
fluctuations of the atomic positions are assumed to be negligible with respect to the
effective distortion of the lattice produced by the electronic instability [9].

(ii) The electrons are assumed to bc non-interacting fermions, ie. Coulomb re-
puision is neglected, which prevents the possible formation of spin-density wave struc-
tures.

When the electronic transfer integral is set to zero, the electrons triviatly localize
at the sites of the lattice. At low temperature, the lattice sites either are occupied by
pairs of electrons with opposite spins or are empty. These pairs of electrons, which
are associated with a lattice distortion, are called bipolarons. For each site #, we
introduce a pseudo-spin o;, which is equal to 1 if the site is occupied and O if the
site is empty. The distribution of pseudo-spin {o;} is arbitrary and can be random
Oor not.

This theory establishes rigorously that, within the above hypothesis on the model,
each of thesc bipolaronic configurations persists for a non-zero electronic transfer
integral ¢ and varies uniformly and continuously as a function of ¢ for small enough 1.
A small electronic transfer integral is equivalent to a large clectron-phonon coupling,
It is also proven rigorously that, for small enough #, the ground state of this coupled
electron—-phonon model is 4 bipolaronic state. More exact results concerning, for
example, the effect of the randomness of the lattice, of the magnetic field, etc, prove
the robustness of the bipolaronic structures under many kinds of perturbations.

Numerical investigations in 1D and 20 modcls confirm that, for moderately large
electron—-phonon coupling, the ground states of electron-phonon coupled systems
are already incommensurate arrays of bhipolarons. This is equivalent to saying that
the corresponding incommensurate structurc is ‘non-analytic’. It is claimed that this
situation corresponds to that of all real cDWs. In addition, it has been shown for the
ground state that the real lattice distortion {x;} is obtained by convolution of the
quasi-periodic distribution of pscudo-spins {&;} by a bipolaronic shape factor {b;},

W=y oub_n ' (2.1)
w

This shape factor b; decays exponentially to zero for large 7| over a finite coherence
length £. On increasing the electronic transfer integral or decreasing the electron—
phonon coupling, this coherence length was found to diverge in 1D models, at some
critical parameter. This transition corresponds to the TBA where the incommensurate
CDW recovers its analyticity.

Since the phonon branch invoived in the Holstcin model is dispersionless, the in-
teraction between the bipolarons at large electron-phonon coupling, which has been
estimated in [4), originates from the overlap between the electronic wavefunctions.
This interaction, which vanishes at the anti-integrable limit, is repulsive and decays
exponentially,. For more realistic models, the fact that the phonon branch has some
dispersion introduces €xtra interacting terms between the bipolarons. In order to
realize this fact, let us consider, for example, the {ollowing electron—phonon Hamil-
tonian:

——thc+Z(Au—u)cc+ ZM U U 7 (2.2)
{5,4}

where ¢} and ¢; are creation and annihilation fermion operators at site £ of a periodic
lattice at any dllTlCIlSlOﬂ (1, 7) are neighbouring sites, u, is the (scalar) displacement
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of an oscillator at site ¢ (the atoms are considcred as classical particles), {M;;} = M
is the elastic matrix of the phonons, which is translationally invariant and strictly
positive, A is the electron-phonon coupling, p is the electronic chemical potential
and t is the electronic transfer integral.

The anti-integrable limit of this model is obtained for ¢ = 0. Then, n; =
¢} c; commutes with the Hamiltonian and the pseudo-spin o, is {n;} = 0 or L.
Bipolaronic eigenstates are then easily obtained for arbitrary distributions of o; = 0
or 1 (polaronic distributions are also available by taking some &; = 1, but these cases
are not considered in this paper; see [2] for dewils). At zero degrees kelvin or at low
temperature, the phonon variable is eliminated by minimization over w;, which yields

—)«ZMM o, (2.3a)

This equality (2.3a) implies (2.1) with b;_, = M;‘}l, which only depends on the

index difference ¢ — n. By substitution of this expression in (2.2), one obtains the
effective spin Hamiltonian at the anti-integrable limit

Hg=-> iXMjlo,0, -Z;m (2.3b)

)

It is interesting to note that this Hamiltonian does not depend on the electrons
or any Fermi surface effect but only on the details of the phonon spectrum. When ¢
increases from zero, there still exists an effective spin Hamiltonian for the bipolaronic
structure, and the contribution to the spin interaction due to the overlaps of the
electron wavefunctions becomes important. In real physical systems, the Coulomb
interactions that were neglected in our theory of bipolarons should also contribute to
the spin interaction as a repulsive term.

As a result there are several physical contributions to this pseudo-spin Hamilto-
nian, which are not explicitly calculable at the present stage of our study. Even if
this Ising Hamiltonian were explicitly known, its ground state would not in general be
explicitly calculable. There probably exist many kinds ol possible ground states, com-
mensurate, incommensurate or else with different thermal behaviour, for such Ising
Hamiltonians. In any case, to understand some qualitative aspects of the thermal be-
haviour of bipolaronic structures, it is instructive in a first step to analyse the simplest
Ising spin Hamiltonians with exactly known incommensurate ground states indepen-
dently of their microscopic derivation. Hamiltonian (1.1) simply extends an exactly
soluble 1D model. For the sake of simplicity we only introduce nearest-neighbour
ferromagnetic interactions transversely to the chajn. This choice was not motivated
for physical reasons, since in real systems the interaction between the chain should
rather be chosen to be antiferromagnetic. This more complicated situation should be
studied later. Nevertheless, model (1.1) will alruady exhibit interesting and non-trivial
features.

Another relevant material situation for which this anisotropic long-range interact-
ing Ising model has been claimed to be a sensible description is the transition from
neutral to ionic, experimentally observed [10] in some mixed stacked charge-transfer
organic compounds as the pressure or temperature is varied. The idea goes back to
Hubbard and Torrance [11], whose argument we next summarize. These materials
consist of stacks of ajternating donor (D} and accepior (A) organic molecules, along
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the a direction. In the ac plane the stacks are arranged in such a way that an A

molecule always faces a D molecule, and so the ac plane is a checker-board arrange-

ment of D and A molecules. On the contrary, in the b direction, ... DDD ... and
. AAA ... chains of molecules arc formed.

To put the problem in its simplest terms, Iet us say that the electronic state of a
DA pair can be either homogeneous (neutral) or ionized (D*A~) depending on the
balance between the net ionization energy and the electrostatic Madelung energy, if
other effects are assumed to be of much less importance. Owing to the spatial ar-
rangement of the molecules, Coulomb interaction inside ac planes favours ionization
of pairs, whereas along the b direction Coulomb repulsion opposes it. If the state of
a pair is described by means of an Ising variable, one arrives at the formulation of
a pseudo-spin Hamiltonian with ferromagnetic interaction within the ac planes and
antiferromagnetic long-range intcractions along the b axis. The net ionization energy
term corresponds to a magnetic field. A somewhat more sophisticated model later
proposed by Bruinsmaa et of [12] does coincide in some limit with this pseudo-spin
model; these authors studied thc pseudo-spin model at zero temperature, using a
technique from Hubbard [13]. The inciusion in the mode] of thermal fluctuations
(which we have considered) could enhance the ability of this appealing physical pic-
ture to explain the (still growing) set of experimental studies of the neutral-to-ionic
transition. :

A very similar type of modelling philosophy earlier had led Safran [14] to propose
this anisotropic long-range Ising model for the understanding of staging phenomena
in intercalation compounds. There the interpretation of the Ising variable is the
occupancy of the intercalant sites, and the physical origin of the antiferromagnetic
long-range pseudo-spin interaction is the repulsion between intercalant layers due
either to the elastic strain produccd by the intercalation in the host lattice, or to
the possible charge donation from the interczlant atoms to the host. Within some
(certainly restrictive) assumptions on the shape of the minimum-energy configurations,
Safran [14] obtaincd some specific phase diagrams for power-law decaying long-range
interactions, using a mean-ficld type of approach (see also Millman and Kirczenow
[15]).

In the preceding situations, the appearance of the pseudo-spin model is somewhat
directly connected with some long-range interacting (idealized) objects (bipolarons,
donor-acceptor pairs or intercalant atoms) that describe the system. It js worthwhile
mentioning here some other situations where the specific models that have been
proposed to describe them are of a different type but, nonetheless, they are equivaient
to the anisotropic long-range pseudo-spin model, regarding their ground states.

Certain quasi-one-dimensional magnetic systems have been modelled [16] by so-
called magneto-clastic Hamiltonians, where clastic degrees of freedom (representing,
for example, positions of magnetic layers) are coupled to interacting magnetic mo-
ments attached to the layers. This coupling appears explicitly in the Hamiltonian,
either making the exchange intcraction dependent on the interlayer distances, or
making the elastic interlayer intcraction dependent on the magnetic moments. Al-
though the first choice seems to have been preferred [16), it is easily seen that both
ways are equivalent in general. In the next section, concerning the process of dif-
ferent transformations leading to the proof of the devil’s staircase, we will show the
equivalence between those models and the mean-ficld approximation to model (1.1).

Finally, de Gennes [17] proposed a model {or the stacking of molecules in discotic
liquid crystals, in which each molecule has two different parts, say a plate and a
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chain. Assuming some interaction potentials between (i) ncighbouring plates, (ii)
neighbouring chains, and (iii) plate and chain of the same molecule, one arrives at a
model in which the competition between the length scales determined by (i) and (ii)
could iead to modulated arrangements of molecules. The interaction potential (i) was
assumed to be of Lennard-Jones type, and the model was studied in the continuum
limit [17] as well as numerically [18] If the Lennard-Jones potential used in these
references is substituted by a double well, this model turns out to be equivalent to
the mean-field approximation to model (1.1), as we wiil see. Whether such a type of
potential could be of use in some particular material remains an open question.

3. The devil’s staircase at finite temperature

The anisotropic long-range Ising model in a magnetic field (1.1), at zero temperature
and provided a convexity condition is fulfilled (see equation (3.1) below), is equivalent
to a Frenkel-Kontorova model] with a piecewisc parabolic potential [5]. It has been
shown that the variation of the modulation wavevector, £, of the ground state with
the magnetic field # is a complete devil’s staircase (DS), i.e. (i) the curve £( H) is
continvous, (ii) for each rational value of &, the curve £( H) is constant over a finite
interval of width A H, and (iii) the sum over all rationals of the widihs of these
intervals is equal to the total variation in F/ (completeness). The convexity condition
mentioned above is

Kny=Jn+ 1) +J(n=1)—2J(n) >0 (3.1)

for all »n(|n| > 2); this is a sufficient condition for the existence of the devils
staircase. The width of the plateaux of thé 0s (or rational commensurabilities { = r/s
(r and s are irreducible integers) is proportional to }::’;l ps K {ps), which is positive.
If the range of the interaction is truncated beyond a finite distance n, (J{n) = 0
for n| > n,), the deviPs staircase £{ H) becomes a harmless staircase with only a
finite number of plateaux corresponding to commensurabilities with s § ny and thus
shows a finite number of jump discontinuities (although they can be rather smail if
ng i large).

Although there have been some speculations on what happens at finite tempera-
ture (see for example Bak and Bruinsmaa [5]), no answer has yet becn given on the
effect of thermal fluctuations on the devil's staircase in 3D models. We will address
this question here for the model (1.1) within a particular mean-field approach. This
type of approximation has becn confirmed to give correct qualitative results in models
like the 3D ANNNI model [19] for a wide range of temperatures, and we do not expect
a breakdown here. The derivation of the mean-ficld free cnergy corresponding to
(1.1) closely follows the one for the 3D ANNNI model (see for example [20]) and the
result is

&({m;}) = Z Z J(n)ymymy, | = Hm + V(m,) (3.2

i (n>0)

where m; (-1 € m; < 1) is the thermal average magnetization per spin in layer ¢
and the mean-field potential V'(m;), given by

V(m) = —Jm? 4+ LkgT[(1 4+ m) ln(1 + m) + (1 = m) In(1 = m}] 3.3)
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is a symmetric double well (see figure 1(a)) below the paramagnetic transition tem-
perature kg T = 2J, The constant J is related 1o the J in (L1) by J = 4.J.
Morcover we assume the explicit form J(n) = D" (0 € n € 1) of equation
(2.2) for the long-range interaction constant J(n}, which straightforwardly satisfics

convexity condition (3.1).
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We prove rigorously for 4 sufficiently small (n < 1) that the devil's staircase
behaviour, which occurs as a function of the magnetic field ¥, is preserved in model
(3.2) at low but non-zero temperature. Although our method of proof fails when
7 becomes close to 1, this does not mean that the DS does not survive at low
temperature. Although a numecrical investigation, which necessarily has a limited
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Figure L (@) Potentisi V' (r) defined by formula
(3.3) fur J = 1.0, &gT = 1.6. () Potential
W () defined by (3.104) for D =1/20, = 1/3,
J=19/40 (then 2J+ D =1 and A = 1/10)
and for kg T = 8/5. The anisotropy parameter is
o = 19 > 1. For T small ¢nough this curve has
wa cusps. (c) Potential W{¢) defined by (3.102)
for D=2/3,3=1/2,J=1/6(then2J+D =
1 and A == 2) and for kg T" = 8/5. Thc anisotropy
parameter s o = 1/4 < 1. This curve is smooth
for any T
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accuracy, is not sufficient for proving such a conjecture when % becomes close to 1,
our numerical analysis does not appear clearly in contradiction with this assumption.

The arguments used for this proof essentially consist of a series of equivalences
between different models regarding their ground states. When # < %, we end in
an equivalent Frenkel-Kontorova (FK) type of model with (non-parabolic) convex
interactions, where the devil’s staircase behaviour is well known to occur.

In appendix 1, we prove the equivalence, regarding the ground-state problem,
between the model (3.2) and the following models (see section 2).

3.1. Model (A): de Gennes model

In this model
C o A 2
U({u}, {v:;) =D Uluy, —uy) + S {u — )"+ Slvgy — v — B (3.4)

This model yields model (3.2) by setting ., — u; = m; and minimizing over {v;}.
The potentials and the constants involved in this model are related to those of the
initial model (3.2) by

U(m) = V(m) - $Dm? (3.5)
A=D1+ m/(1-mn) C=D(1-n°)/n (3.6)
Ab= H. 3.7

3.2. Model (B): magneto-elastic model

Here

C 4, A o Ao
F({m;} {y:}) = 3 50 + 5 (Wi — v + 700 = Hog + 587 + U(my)

= S+ S — i~ b )+ U(m) ~ H(yigy — ). ()
; ‘
This model also yields model (3.2) by minimizing over {y,}. Models (A) and (B) are
directly related by setting v; — u; = y; and u;; — u; = my.

The long-range interactions between the {m;} of the initial model (3.2) have
been eliminated in both models (A) and (B) by introducing a local coupling with
an additional harmonic field {v;} or {y,}, which only involves nearest-neighbour
interactions. Since y; is necessarily bounded, the term 3. H(y, ., —v) = H{yy -
Yo) in (3.8) is a microscopic term. For an infinite system, it does not play any role in
the ground-state determination and can be dropped in (3.8).

By minimizing the variational form (3.8) with respect to {m;}, we obtain another
equivalent model with only one variable per unit cell.
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3.3. Model (C): model with non-convex interaciions

In this model
C .,
({y}) =D vl + Wy — v~ b) (39

where the symmetric potential W is defined through the following minimization:
W(t):min[U(x)-i-éA(a:+t)2] (-1€zg1). (3.10a)
Then {m,} is related to {y;} by
U(m;) + A(my + (v, — v — b)) = 0. (3.100)

Model (C) corresponds to a chain of particles in harmonic potentials, where y;
is the displacement of particle ¢ from its equilibrium position, which are coupled
by an anharmonic interaction potential that depends on the interparticle distance,
Yigp —Y; — b

Let us examine in more detail the propertics of W (¢). Using z as a parame-
ter, the function W ({) is the lower envelope of the possibly multivalued curve £2
parametrized by the equations

Ha) = —o~(1/A)' (z) = —2—(1/AN—(2J+ D)o+ 3k T In[(1+2) /(1 -x)]}

(3.11a)
W(z) = U(z) +[1/(2A)]U'(«)*. (3.118)
It is easily found by differentiation that
dW/dt = -U'(x) (3.12a)
d?W/dt? = d(dW/dt)/dt = AU"(2}/[A 4 U"(x)] (3.12b)

which implies that W (¢) and U(x) arc both symmetric double well (kg T < 2J+ D)
or symmetric single well {(kzT > 2./ + D). W (1) and U{2) have the same minima
W(zo(T)) = U(zo(T)) at the Jocation { = —ux = wxy(T), which fulfils

22J + D) = kT I[(1 + 20)/(1 = 2] (3.12c)

However, when W (t) is a double well, there are two possible situations depending
on whether #(z) = —2 — {1/A)U'(x) is a monotonically decreasing funciion of =
or not. When U”(0) + A is negative, that is when

0<2J+D-A (3.13a)
keT <2J+ D— A (3.13b)

the curve © has two symmetric cusps and a knot (cf. fgure 1{(b)) 5o that the lower
envelope W (i) has a cusp at ¢ = 0 corresponding to the knot. Conversely, when
U"(0) + A is positive, W (1) is smooth with no cusp and knot {cf. figure 1(c)).

It is then useful to define the anisotropy parameter

a=J/Dnp/(1=-m]=J(1-n)/DPn (3.13c)
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as the ratio of the total interchain coupling J and of the total intrachain coupling
YoasoJd(n). Then W(t) has a cusp when two conditions are fulfilled: (i} the
anisotropy parameter « is farger than 1; (ii) the tempcrature is small enough, that is

ke T < 2J —2Dn/(1—n) = 2J(1— 1/a). (3.14)

Let us consider now another type of model.

3.4. Model (D): Sasaki-Griffiths model

Sasaki and Griffiths {21] noted that a particular class of models with the form (3.9)
can be exactly transformed into FK modcls. This situation is obtained when potential
W (t) can be written exactly as

W(t) = min{W,(t), Wy(t + A)} (3.15q)

where W;(i) is a strictly convex function with 2 minimum between 0 and A. Then,
introducing new pseudo-spin variables o, = 0 or 1, the ground state {y;} of the
variational form (3.9) is given by minimization of the variational form

. C .
*{y,H = antin (Ey; + Woly; v — b+ a,-A)) . {(3.15h)

By setting

i-1
=y +AY o=y +AM, (3.16a)

a=0

where M; = Zf;__lo o, is an integer, this form becomes
B({2:}) = D Vew(2) + Wylzigy = 5 — b)- (3.165)

By dropping the condition o; = M, ; — M, = 0 or 1 and considering {M,} as
arbitrary integers, this model is nothing clse than a Frenkcl-Kontorova model with a
piecewise parabolic potential

Veg(z) = 3C Mliugégéﬂ(: —AM)® (3.16¢)
with period A and a convex potential ¥/, coupling the nearest-neighbour atoms. The
exact ground state of this FK model (3.16) is obtained for M; = int(i{ + o)} where
o is an arbitrary phase and 0 € ¢ < 1 since W(2) has a minimum between 0 and
A. Therefore, the condition o; = M, , — M, = 0 or 1 is automatically fulfilled by
the ground state {z;} of the FK model, which thus corresponds to the ground state of
model (3.15). There exists a hull function f(w) = v+ g(2) where g(x) is 1-periodic
such that z; = f(i{+ &) and y; = z; + AM{2;/A) where M(z) = int(z+ 1) is
the closest integer to =,

Although the double-well potential defined by (3.104) does not have the form
(3.15a} (except at zero degrees kelvin), in some cases, it can be replaced equivalently
by another double-well potential with the form (3.154).
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visited
regions

Figure 2. Sketeh of the construction of potential
W) trom potential W{¢).

3.5. Model (C'): variation of model (C) with the form (D) _
Let us consider the symmetric potentials &(.r) and 1¥°(¢) defined as (see figure 2)

U(x) = Ulx)
W(t) = Wit)
U(z) = Uz - 22(T))
W(t) = W{i —22(T))
U(z) = U{x +2xy(T))
W) = W(t + 2z,(T))

for || € @o(T)
for 0] < 2o(T)

for x > 24(T}
for t > xo(T)
for v < —2y(T)
for t < —xo(T).

These definitions of . potentials just correspond to replacing one part of the potential
X by a translation of the remaining part (sec figure 2). It is readily proven (as

suggested by figure 2) that
W(1) < W(1)
and

U(z) g Ux).

(3.17a)

(3.17b)

Defining W,(2) = W(t) for ¢ > 0, ¥/(t) can be written as

W) = min{Wy(1), Wy(¢ + A)}

with

A =2z,(T).

(3.18a)

(3.18b)
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Models (A) and (B) where potential U(x) is rcplaced by potential U(z) are
called models (A’) and (B’) respectively. Model (C’) is obtained from model (C) by
replacing W (1) by W(t) since

W(t):mgn[U(m}+%A(a:+t)2] (-1€x<g1).

Models (A"), (B') and (C') are equivalent with exactly the same arguments as for
models (A), (B) and_(C). They also are equivalcnt to model (3.2)° where potential
(3.3) is replaced by V(m) = U(m) + + L Dm?2. In the same range of temperature as
for model (C), the ground state of model (C') only ‘visits’ the convex part of W ().
Consequently model (C) with variational form

CAC
oD = Comin (7 + Wiltens — = b4 0i8)) G19)

has the form of model (D} required by Sasaki and Grifliths. When the minimum,
zo(T), of W, o(t) is such that the corresponding value of z,,, ~ z; in modei (3.16),
2o(TY+ b, sat1sﬁes

0<ay(TY+b< A =22,(T)

or
_H _HIl1-9y

—E(M) <b=2 =51y

< @(T) (3:20)
the exact results known about the FK model apply and the ground state {z;} of model
(3.16) is an incommensurate structure: thercexists 0  ( < landaphase 0 g ¢ < 1
such that

M; = int{i¢ + o). (3.21a)

On the other hand, when H/A > =z,(7T), it is straightforward to show that
y; =0, M; =0 and o; = 0 in (3.18) yiclds the ground state. Then, (3.21a) holds
with { = 0. A similar resuit holds when /A < —xy(T), which yields { = 1 in
(3.21a).

Thus, in all cases we have for the corresponding ground states of models (A'),
(B') and (C)

o, = int((i + 1)¢ + @) — int(i + o) = x(i¢ + a) (3.21b)
where
x(2) = int(z + ) —int{x) (3.21¢)

is the characteristic function, which is 0 or 1 and periodic with period 1.

In appendix 3, we prove that, for » < § and 7" smali enough, the ground states of
models (3.2) with potential V() and V(m) = J(m)+ L Dm? are identical. Since
the second model is equivalent to a Frenkel-Kontorova model, the ground states of
the initial mode] are commensurate or incommensurate, and the wavevector of the
modulation depends on the magnetic field # as a complete devil’s staircase.

For n close to 1, the method used in appendix 3 for proving the persistence of a
Ds at low temperature does not work. This is due to the fact that for the ground state
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{m,} of model (3.2), there exists {m,[ such that [m;[ > z,(T). Thus models (A),
(B) and (C) are not necessarily equivalent to models (A'), (B') and {C') respectively.

Nevertheless, our numerical results suggest that the devil’s staircase scenario re-
mains valid or at least is 3 good approximation for any 5 when the temperature is low
enough. In the following scctions we use two different techniques for obtaining the
phase diagram. The first numerical method is exact in principle, but requires longer
computations for a high accuracy. It confirms this assertion within the numerical
errors. The second method is analytic, but bascd on an approximation of W(¢) by a
piecewise parabolic potential. It yields cxplicitly a phase diagram that is in agreement
at Jow temperature with those obtained by the first method.

4. The minimization eigenvalye method

In the previous section we have proved that the ground states of the original pseudo-
spin model (3.2) map exactly those of model (C):

P({w}) =D (C/2)yf + W(yir — v — b). (4.1)

t

This one can be considercd as a displacement model by considering variable y; as
the displacement from the equilibrium position of the 7th particle of a chain. The
interparticle interactions in this chain are nearest-neighbour and double-well shaped
(see figure 1).

As we have already noted, it is much easicr to compute the phase diagram with
model (C) than with the initial model, which involves long-range intcractions. For 1D
models with short-range interactions like (C), c¢flicicnt numerical techniques extending
the transfer matrix method at zero degrees have been developed. The method, calicd
the effective potential method, or minimization eigenvalue method, is described in
great detail in the recent review by Grifliths [7].

This method applied to model (C) consists of finding a scalar A and a function
R(y) that fulfil the following lunctional ¢quation:

R(y) + A = (C/2)y] + min[W(y -y’ - 0) + R(Y)]. (4.2)

For each value of y, ¥ = r(y} is defined as the value ¥ where the minimum in (4.2)
accurs. The attractor of this (contractive) map is a ground state of the model, and
A turns out to be the ground-state energy per atom. Formally (4.2) is the continuum
version of the eigenvalue problem in minimax algebras [22], A being the (unique)
additive cigenvalue and R(y) the corresponding additive right-eigenfunction.

R(y) can be interpreted as the effective potential, which acts on the last particle
{with coordinate y) of a semi-infinite chain extending to the right-hand side, when
assuming that all the other particles arc relaxed in the arrangement with the lowest
energy. One can define identically an cffective potential S(y) for a semi-infinite
chain extending to the left-hand side, which [ulfils

S(y) + A =(C/2)y} + lT;i,n[S(y') + W - y—b). 43}
With both (right- and left-) eigenfunctions, the effective potential F(y) that acts

on a particle of a fully infinite chain, when all the other particles on both sides are
relaxcd in their configuration with the smallest energy, is

F(y) = R(y) + S(y) - (C/2)y} . (44)
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As shown next, this effective potential f(y) gives detailed information about the
ground-state properties and its low-energy excitations.

Equation (4.2) is solved by numerical procedures assuming that ¥ belongs to a
grid of N points on the interval —y, .. < ¥ € Yoy ThHe maximum value y.,.
is chosen for each set of parameters in order that, for the ground state, y, surely
belongs to that interval. The number N of points in the grid can be as large as the
computer capabilities and/or precision requirements suggest. We have used N = 500
in most cases. The interparticle potential W(y ' —b) defined implicitly by equatlon
(3.10) is preliminarily calculated for y and 3y’ belonyng to the chosen grid,

The discretized minimization eigenvalue cquation is solved by using the algorithm
of minimizing cycle, explained in [23]. The algorithm yields the exact solution of the
discrete eigenvalue problem in a finite time (roughly proportional to N2). Therefore,
the accuracy of the result is essentially determined by the pitch of the grid used for .

H,

Figure 3. Phase diagram in the T-H plane (for D = 1, p = 0.8, J = 0.5), obtained
by the method of effective potentials. Only the widest phases are shown, labelled by
wavevector ¢. Although these values ol the paramecters [ic well beyond the rigorous
bounds we found, a devil’s staircase scems 1o cxist here up o T =~ 0.67.. The phase
labelled 2/4, which can be seen at high temperature, has period 4, but wavevector 1/2.
We follow the notation of [16, 24] in order Lo distinguish this phase from the ‘normal’
1/2 phase.

Figure 3 shows the phase diagram versus H and T for J = 3, D =1 and
n = 0.8 (the anisotropy parameter (3.13) is a = ). Modulated phases do appear in
the region of the H-T plane dcfined by

kgl < kgTyp =274+ 2D3/(1+n)
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(the paramagnetic transition temperature at i = 0)
and
H < H.=2Dnf(1-n)
(the homogeneous-to-modulated transition field at T = 0).

At zero temperature, agreement with the exact result [5] is obtained, which tests
.the quality of the numerical codes. At low temperatures, the wxdth of the stability
domain of each modulated phase changes very little. Although n > 1, the Ds seems
to persist at low temperature.

1(a)

{e)

Figure 4. Example of a typical change in F(y)
potential when a ¢-IC transition is approached. For
these pictures, T/T: = 0.529412, D = 1.0, 1 =
0.8,and in () H/H. = 0873125, (b)) H/H. =
0.872500 and (¢} H/Hc = 0.872375.

Some examples of effective potentials £7(y) are shown in figure 4. Function F'(y)
exhibits absolute minima for the values y, belonging to a ground-state configuration.
It also exhibits local minima corresponding to the metastable configurations {y;},
which are called discommensurations. The difference A F between these minima and
the absolute minima is the energy of the discommensuration, i.e. the cost of creating
such an excitation. A commensurate—incommensurate (C-IC) transition occurs when
the discommensuration energy A F vanishes; an cxampie of this situation is shown in
the sequence of figure 4. This behaviour, which is characteristic of a devil’s staircase,



Anisotropic 3D long-range Ising model in a field 5937

{e)

PR e b . PR P B SRR ST T S
-02 -0t [} nt a -0z . =61 a al 9.2

I
Figure S, Example of a typical change in F(y)
potential when a first-order transition takes place.
T/Te = 0941294, D = 1.0, n = 0.8, and in
(@) H}H, = 0.217, (p) H/H; = 0.217 125 and
(¢) H/H. = 0.21725.

is numerically observed over a wide range of temperaturcs. It suggests that the DS
survives in fact to rather large temperature.

By contrast, for larger temperatures the behaviour of F(y) becomes quite differ-
ent. As shown in figure 5, first-order phase transitions (i.e. discontinuous change of
both the ground-state positions and the modulation wavevector) can take place before
the discommensuration energy vanishes, which proves that the Ds disappears at least
partially. Other interesting features can be observed such as, for example, second-
order phase transitions corresponding to a period doubling. Then, the modulation
wavevector of a commensurate ground state changes discontinuously and is divided
by 2, ie. the unit cell doubles, while the particle positions change continuously.

However, it is well known that the mean-ficld approximation becomes unreliable
at larger temperature where onc¢ approaches the critical line at the border of the
homogeneous (paramagnetic) region. Therelore, the existence of first-order transi-
tions and of period-doubling transitions remains questionable for the initial model
(1.1).

We should mention here the resemblance of this phase diagram (figure 3) with that
of the model studied by Marchand and Caillé [16], which should be clearly understood
after consideration of section 3. Also, many features of this phase diagram are shared
by the one of the XY chiral model studied by Yokoi et af [24]. Moreover, as this
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Te

n

Figure 6. Phaﬁc dlagram in the T—H plane for the
same values of p'\rameters as in figure 3 (D =1,
7 = 0.8, J = 0.5), oblained by the parabolic
approxxmdnon of potentlal W(tj at low enough

' lemperature. "The resuits” are quue in agreement
with those of section 4, and the quantitalive values
are available up to T'~ 0.4T¢,

paper was completed, we became aware of a recent work by Ishimura [25], in which
the phase diagram for this model has been obtained by means of a ‘brute force’
numerical procedure, without saying clearly if the devil’s staircase survives or not at
low enough temperature.

1 2 L 1 P

0.8 7

Wavevector Q

0.4 7

T =T
-1 -0.5 0 0.5 1
Magnetic Fleld H

Figure 7. Phase diagram at fixed temperature in the Q-f plane, where @ is the
wavevector, oblained with the parabolic approximation of patential W (t). The devil’s
statrcase is plotted for three different values of T, and for D =1, J = 0.5, .= 0.3.

5. Low-temperature analytical approximation

In this section, we assume that the temperature is low enough in order that the
ground state of model (3.9) only visits the convex part of the double-well potential
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W(t). Then this double well can be approximated reasonably well by a piecewise
parabolic potential, allowing an explicit calculation of the phase diagram versus T
and H.
We replace W(t) in (3.9) by the parabolic approximation:

W(t) =~ min [%W"(wo)(t = mo)g’ %W’”(mu)(i + ‘Pu)a] + Wi(z,). (5.1)
The constant term W (x,) does not play any role in the determination of the phase
diagram, and can be dropped, as we shall do in the following. The values ta, =
+x,(T) are the two minima of the potential U(2) (with —1 < z < 41). W () can
be written as

W(t) = min (W (=)t — 3A(T) + A(T)o}} where o =0 or +1. (5.2)
Now, we are interested in the evaluation of W(y, ., —y; — b) in model (3.9). At this
point, we introduce the new variables {z;} and {o;}, as defined in (3.16)

i-1 _
z =y +A(T)) o (5.3)

Y
and W(y;,, — y;, — b) becomes
Wiyip =9 = b) 2 min (W o) yigr — v = b~ §A(T) + A(T)e]?)
= nliin {3W"' ez — 2 — 0= A(T)o; — LA(T) + A(T)o,}P}
= g W2o)[z141 — 2 = b— 5A(T)]". 54)

Following this transformation, the first part of model (3.11) is also changed and
becomes

Doy =310 - A(TYM ). (5.5)
i i
The model (3.11) thus becomes with respect to the new variables:
“f"f,fz i) Z)\(T mm[ —A(TIMP + Sz — 2 = b AT (5.6)
with

AT) = C/W"(zy). (5.7)

The model (5.6) is a piecewise parabolic Frenkel-Kontorova modcl, which is exactly
solvable [5]. These models depend on the temperature T (through the value of
t,(T)). Taking the analytical result in {5], we obtain for the ground state

M; =int(i¢(T) + a) (5.8a)
+o0

z;=B(T) > n(Ta,, (5.8b)

B(T) = A(TYMTY/HXMT) + A(T)/? (5.8¢)

T(T) =14 3MT) - J4MT) + MTY]/° (3.84)
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where int(x) denotes the integer part of z, o is the phase of the ground state, and
¢(T) is the wavevector of modulation, which is the same, by successive equivaiences,
as the wavevector of the models (A), (B) and (C).

The magnetic ficld is connected to the wavevector by

_ H(T,Q)  A(T) _ A(TIMTY — n
b=t _2{4A(T)+A(T)3]u2;)0"[2““ (n¢(T)) + 1m(T)".

(5.9)

Using function +(7T") instead of M7T) = [1 — #(T)]?/(T), the magnetic field
becomes as a function of T and ¢:

ol AT (L= (T - .
H(T'C)_Dl—n 3 (T(T)[1+T(T)]§2ﬂmt (ng(THT(T)
2+(T)
Tl T(T)) ' (5.10)

The notation int*(z) denotes the two possible definitions of the integer part for z
integer (i.e. int*t(n) = n, and int™(n) = n—1 for n integer, and int*(z) = int(z)
for z non-integer). This induces discontinuitics (or each rational value of ({(T) = r/s
(r and s being irreducible integers). At T fixed, (T, ¢) is invertible, and the inverse
function ({7, H) is a continuous function, known as the complete devil’s staircase.
For T = 0, we have +z, = +1, W"(£l) = A, and as a consequence 7(0) = 7.
Thus the formula (5.10) gives

H(0,()=D (2(;""-1 S n intE(n€(0)) ~ 1—2_1"—n) (5.11)

1 n>0
which yields the variation ¢( H) of the initial model at 7" = 0. We can expand (T

at low temperature, using the fact that for 1,(7) = 1 — ¢,(T"), €o(7T) < L. In that
case, we obtain

UMt — q(T)]) = 0= —2Jy + JkyTlog[2/e(T)] (5.12a)
co{T) = Z2exp(—4Jy/hpyT) (5.12b)

with J, = J + D /2. Following the same¢ approximation for W*(¢,) and r(T), we
obtain

MT) = (C/A)1 + (24/ky T)eg(T)] (5.13)
T(T)~n[1 - (2D /kgT)e (T)]. {5.14)

By substitution of the value of (5.84) in (5.10), we can draw the DS at [inite
temperature 7' (see figure 6) and the phasc diagram for some values of parameters

n, D and J as shown in figure 7. At low enough temperature, this last figure is in
quite good agreement with the figurc obtained for the same parameters in section 4.
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6. Conclusions

In summary, concerning the physical results obtained in this paper for a particular
mean-field model:

(i) We have shown (and proven rigorously under extra conditions) that the com-
plete devil’s staircase that exists at zero temperature persists at non-zero temperature.

(ii) We have also shown that the temperature has an effect on the width of the
tongues: this is reduced except that corresponding to commensurability 4.

Concerning the mathematical methods used in this paper, which could find appli-
cations for other models:

(i) We have established an equivalence regarding the ground state between models
with long-range interactions and models with short-range interactions. The trick con-
sists of the introduction of an extra discrete field of variables {y;}, which ‘transport’
the interaction at long distance.

(i) By elimination of the initial field of variables {m;}, we have shown under
some conditions that the model becomes equivalent to a Frenkel-Kontorova model,

For finding explicitly the phase diagram with a good accuracy, we performed two
approaches, which are in good qualitative agrcement with one another (in the low-
temperature regime). The first one is the minimization eigenvalue method, which is
in principle exact, but with an accuracy that depends numerically on the pitch of a
grid. The second method uses the approximation of potentials by piecewise parabolic
functions, which yields analytic calculations and remarkably accurate results at low
temperature. ‘

The 3D mode! studied in this paper consists of incommensurate chains coupled
ferromagnetically. In a short forthcoming paper, it will be shown that, when fixing
the magnetization of the model (which corresponds to fixing the number of electrons
if this model is used for a bipolaronic charge-density wave), we necessarily have a
significant variation of the wavevector of the modulation as a function of temperature.
This variation is thermally activated and, although it has the wrong sign, it exhibits
unusual locking effects at simple commensurabilitics and striking similarities with
unexplained features observed on real cpws. However, (or describing more precisely
real CDWs, an antiferromagnetic coupling between the chains would be more realistic
and could give results in better agrecment with experiments. The method used here
cannot be used identically for solving this modified model. Modified methods are
under study.
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Appendix 1.
Minimization of (3.8) with respect to {y;} gives, for all n,
A(my, = my_1) +(C+ 2A)y, ~ A(Ypyr + Ynoy) = 0. (AL1)
These equations can be solved using a Fourier transform:

.= poulg) exp(=ign)  y, = uyla) exp(=ign)  (AL2)
g q

which yields
y(q) = [A(1 - ¢')/{C + 2A[1 — cos(q)] }Im(q). (AL3)

By substitution of y{q) into the variational form (3.8), one obtains

. )

i n>»0

+ 1Dm} (Al4)

which establishes the equivalence between model (B) and the original model (3.2).

Appendix 2.

We prove that, for low enough temperature, the sct of values taken by ¢, = y;,, —
y; — b for the ground state of model (3.9) lic in the convex part of the potential
W(t), ie. W7(¢,) > 0 for all i.

Proof. The derivatives of V{(x) are V'(x) = =2Jz + Lk T n[(1+ 2)/{1 — z)]
and V"(z) = —2J + kg T/(1 — 2%). Since for » > 0, V"(z) is a monotonically
increasing function that diverges for # — 41, the symmetric potential V{x) is a
double well when V7(Q) < 0, that is for

ke T < 2J. (A2.1)

Then, V'(x) has two minima at 2 = 3 ,(7T), such that V’(x,) = 0 and V“(z,) > 0,
which implies V”(z) > V#{(z,) = V*(~2,) > 0 for |z| 2 «,(T). It is more
convenient to consider 0 £ z; < 1 as the variable instead of 7. Then, we have

ke T(2y) = 4dz, /nf(14 2,) /(1 - 2,)]. (A2.2)

For the ground-state configuration {m,}, the variational form (3.2) is an absolute
minimum with respect to each m,. The part of (3.2) that only depends on m; has
the form V{m,;) — h;m; with

b= H =Y Jd(n)mg,, (A2.3)
n#0

which yields
Vi(im,)=h,. (A2.4)
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Since V(z) is a symmetric double well, m; has the sign of &; and

im;l 2 =, (T) (A2.5)
which implies
Vi(m) 3 V(,) > 0. | (A26)
We now consider U(x) = V{(z) = (D/2)x% Thus we have
U'(m;)=V"(m;) = D2 U'(2) = V"(2;) - D. (A2.7)

We obtain )
U'z;)=—=(2J + D)+ kpyT1/(1 — 2})
= — (274 D)+ [4Jz, /(1= =D)L/ n[(1 + ) /(1 - =)l (A28)

Condition U"(«,) > 0 is equivalent to F(x,) = 4Jx,—(2J+D)(1-23) In[(1+
z,)/(1 —2,)] > 0. It is easy to check that ['(x,) > 0 for 0 € » < 1, which
implies that F(z,) is convex. Since F(0) = 0, F'(0) = -2D < 0, F(1) =
4J > 0, the set of positive U"(x,)} is a uniquc interval ]z, ,1[. Consequently
for T < T,, = T(z,,,), any ground-state configuration {in;} of model (3.2) fulfils
U"(m;) 2 U”(x;) > 0 and thus only visits the convex part of U(z).

The ground-state configuration {y,} of model (3.9} is related to {im,} through
the equality

U'(m;) + A(m; + 4} =0 (A2.9)
with

L= Vi — yi b (A2.10)
and (3.126) yields

W(t;) = AU“(m,)[[A + U"(m;)] > 0

which proves that, at low enough temperature, the ground state {y,;} of model (C)
only visits the convex part of potential W (y;,, ~ y; — b).

Appendix 3.

We prove that, for n < i and for low enough temperature, the ground states of
models (3.2) with potential V(m) and V{(m) = {I(m) 4+ L Dm? are identical.

Proof. The proof is obtained by showing that we have |m;| € z,(7) for the ground
state {m;} of model (3.2) with potential ¥{m). Then, we have for all 7, V(m,) =
V(m;). Because of the inequalities (3.17), which imply V(m) < V(m), the ground
states of model (3.2) with potential V(m) and V(m) are the same.

Let us consider model (3.2) with potential V/(m). Since this model is equivalent
to a FK model, the ground state {m;} is described by a l-periodic hull function m(x)
as

m; = m(i{ + a). (A3.1)
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The sign of m; is determined by the equality
sgn{m,;) =1- 2g, (A3.2)

where o, = x({ + «) is defined by the hull function (3.216). Consequently, we can
write

m(z) = [1 = 2x(2)}5[1 + 2, (T)][1 + ()] (A3.3)
where the hull function (=) fulfils, because of (A2.5),
l€($)|<[1_3’1(T)]/[1+1'1(T)I- (A3.4)

The local field h; = h(i{ + a) defined by (A2.3) can also be written with a hull
function A(z) defined as

hiz)= H - ZJ(n)m(;}:+ n¢)=[1+4+2,(7] Z J(n)v(z 4+ n¢)

0 o
+ (H — 4 (DY J{u)) + 7(2) (a39)
with "
r(z) = §[1 4+ 2,(T)] 2 J()f1 = 2x(x +n¢)]e(z + n¢)
and v

Ir(2} < §[1— 2 (T)] Y J(n)=[1 -2 (T)]Pnf(1-n). (A3.6)
nHEQ

Let us consider the function

Hx) = ZJ(n)x(a:-{- né) = Z JOfint(z + (n 4+ 1)) —int{x + n)]

n¥Q nfd

= —J(Dfint(z + O =int())+ S ()~ J{nt D)lint(z+ (n+1)¢)

n=1
—int{e —nd)]
and the difference between its maximum 4and minimum

0< max &{x) - mgn ¢{x) < J('I)m;lx[int(z‘ + () —Int(e)] - m;n[int(o: +¢)
—int(z)] + Z[J(n) = J{n 41} (m;}x[int(m+ (n+ 1))
n=1

~int(z — n{)] - n‘ﬁn{int(m +(n+1){)—int(z - n(_‘)]) . (A3

Function {int(z + (n+ 1)) ~int{x — n()] is 1-periodic with two discontinuities
with amplitudes 1 and ~1 per period. Thus,

mg,x[int.(m—{- (n4 1) —int{z—n{)]- m}n[int(m-’.—(n-}‘ DO —int{z —-nd) =1
(A3.8)
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which implies

0< mfxgt-(x) mmgn ¢lx) < J(1) + i{.](-n) —J(n+ 1) =2J(1)y=2Dy.
n=1

(A3.9)

Consequently, using (A3.5) we have
0 < max h(z) - min h(z) < 2[1 =2, (T)] Dn/(1 - ) +2[1 + &,(T)] Dn = p(T).
(A3.10)

Since for an incommensurate structure fi{2) takes both positive and negative values
(see appendix 2), the right-hand side p(T") of (A3.10) is an upper bound for the local
field h;. For T going to zero, z,(T) goes to 1 and this upper bound goes to 4 Dq.
Note that o(T) is an increasing function of T. When 4Dy < D, that is for 7 < f;,
there exists T, such that for T < T,, we have for all 7, k; € p(T) < D. Then
comparing (A2.4), V/(m;) = h;, and the equation V'(xo(T")) = Dzy{(T), it comes
out that for all 7 we have [m,| < x,(7).
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