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AbstmcL The phase diagram of a three-dimensional k ing model in a magnetic field with 
wmmensurale and incommensurate phases is studied a1 low temperature within a mean- 
field approximation. 'This analysis was motivated by problcms in condensed matter physics 
concerning, for example, bipolaronic charge-density waves, neutral-to-ionic transitions in 
organic salts, staging in intercalation compounds, magneto-elastic materials, stacking in 
discotic liquid crystals. eic. n i e  interactions bC1ween the Ising spins are long-range 
exponentially decaying, and arc antiferromagnetic in one direction and ferromagnetic in 
the perpendicular planes. 

The ground slate of this niodrl is known IO bc a commensurate or an incommensurate 
SlNCture wilh a waveveclor lhal varies as a complete devil's staircase as a function of 
the magnetic field. Pmvidcd some conditions hold on the model parameters, we prme 
rigorously thal. for small enough temperature, the mean-field variational form 01 the 
model stili yields a minimum that is a commcnsurate or an incommensurate structure, 
the wavevector of which also varies as a complete devil's staircase as a function 01 the 
magnetic field or temperature. 

The explicit computation of the phaw diagram is done by using tw methods that 
are consistent with one anoihcc the lirst is based on tlie numerical analysis of a vansfer 
matrix at zero degrees kelvin: tlie second is based on an approximation valid at low 
Lemperaluq which allows one to map this mcmlield modcl onto a Frenkel-Kontorova 
model. This second method yields an analytical expression lor the transition lines of the 
phase diagram. 

1. Introduction 

This paper is devoted to the mean-field analysis at low temperature of the phase 
diagram of an anisotropic king model in a magnetic field. Unlike the well known 
A"Nl model, this model can exhibit commensurate and truly incommensurate ground 
states. Our main purpose is to obtain some useful qualitative information on the 
thermal behaviour and the wavevector variation at low temperature of non-analytic 
incommensurate phases. 

Before introducing the model, let us first recall the characteristic properties of 
non-analytic incommensurate structures. They are characterized by the fact that 
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their microscopic configurations are discontinuous functions of their phase. As a 
physical consequence, the incommensurate modulations of these structures are intrin- 
sically pinned to the lattice and are phase-detectible (i.e. they admit phase defects 
as metastable configurations; analytical incommensurate structures being, on the con- 
trary, undefectible). Another consequence is that  the phonon spectrum associated 
with the phase fluctuations (phason) exhibits a strictly non-zero gap. At low tem- 
perature the relevant excitations that describe the thermodynamics of the system are 
not these phonon modes but are those metastdbk configurations which correspond to 
random distributions of phase defects. The thermal fluctuations of these metastable 
configurations contribute to the dynamical response function as a central peak with a 
narrow width in frequency. 

It has been shown that the non-analytic incommcnsurate phases are well described 
by an effective Hamiltonian defined on discrete variables instead of continuous atomic 
coordinates. These discrete variables could be, for example, integers (as in the 
Frenkel-Kontorova model at d 2 2 dimensions [I]) but can often be reduced to Ising 
(or pseudo-spin) variables as for the one4imcnsional (ID) Frenkel-Kontorova model 
and for the bipolaronic structures of many coupled electron-phonon models [2]. 
Within a general framework, the nature or thc site variable (Ising spin, integer or else), 
which has to be used to describe the metasrdbk defect configurations, is determined 
by the coding sequences, which have to be used at the ‘anti-integrable’ limit of the 
considered model [3]. This justifies very gcnerally why king spin Hamiltonians are 
appropriate for describing non-analytic incommensurate phases. 

Thc effective Ising Hamiltonian that describes the thermodynamical behaviour of 
the non-analytic incommensurate phases at low tempcrature depends sharply on the 
initial model. It is generally quite complex, involving not only pair interactions but 
three-spin, four-spin, . . . interactions, which become more and more essential when 
approaching the transition by breaking of analyticity (TBA) [4]. Sulficiently far away 
from the TBA, we can drop the multi-spin interactions bcyond order 2 There are 
also special choices of the modcl for incommensurate structures, where an effec- 
tive Hamiltonian with only onc- and two-spin interactions can be explicitly obtained. 
However, these models are somewhat pathological at low coupling since they cannot 
exhibit any analytic incommensurate phasc and thus any TBA. This situation occurs 
for example in the I D  Frenkel-Kontorova model with a piecewise parabolic periodic 
potential and harmonic springs [SI. We then obtain a Hamiltonian that is an king 
model with exponentially decaying long-range interactions with an external magnetic 
field. The thermodynamical properties of this model were studicd in detail in 161. 
However, although this ID modcl exhibits a hierarchy of crossover temperatures when 
T goes to zero, it docs not exhibit any true phase transition with ordered phases. The 
crossover temperature corresponds only to smooth changes in the thermodynamical 
behaviour and in the spin correlations. 

In this paper, we analyse the phasc diagram of a three-dimensional (30) version 
of this ID model. This 3D model consists of I D  chains with the same Hamiltonian 
as in [6]. We introduce phenomenologically a fcrromagnetic coupling J between the 
chains, which might not be realistic in many physical situations but is simplcr in a first 
approach of the 3D case. The main advantage of this choice is that the mean-field 
variational form of this 3 0  model easily reduces to that of a I D  model. Nevertheless, 
the results obtained should shed some light on the possible behaviour of 3D models. 

L M Florin et ai 
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This Ising Hamiltonian is 

J ( ~ Z ) . S ; , ~ S ~ + , , ~  - I Y S ; , ~  (1.1) 

where ( i , j )  labels a site in a 3D cubic lattice ( i  for the z direction and j = (f=,&) 
for the perpendicular directions) and 6 is a vector in the xy plane connecting in-plane 
interacting sites (which we will assume to be ncarcst neighbours); H is the external 
magnetic field, J(> 0)  is the interaction constant within the zy planes, and J(n) 
is the (decaying) interaction constant between nth neighbouring pseudo-spins in the 
chains along the z direction. For convenience, we choose for J ( n )  the explicit form 

J ( n )  = Dqlnl (1.2) 
with D and q (0 < 1) 4 1) some constants. 

A particularly important issue, regarding qualitative physical predictions based on 
the analysis of this model, concerns the bipolaronic charge-density waves (BCDW). We 
predict a significant thermal variation for the BCDW wavevector (in agreement with 
the experiments on real charge-density wdvcs (CDWS)) unlike for analytic CDW where 
the wavevector variation should be non-observabk experimentally. This issue will be 
discussed in detail in a forthcoming paper. 

In section 2, we describe some physical situations where, according to condensed 
matter literature, similar models appear. We will mention there some other models 
which, although different, can be shown to bc equivalent to (l.l), regarding the 
mean-field properties. 

In section 3, the proof of tho= cquivalcnccs yields a rigorous justification of the 
existence of a devil’s staircase phase diagram at linite temperature. This result, which 
extends the zero-temperature characterization of the model obtained by Aubry [SI, is 
proved under certain conditions on the model parameters. 

In section 4, we explain a numerical technique based on the method of effective 
potentials (or zero-degree transfer matrix) [7], which allows the determination of 
the phase diagram of the model with no rcstrictions on the parameter range and 
arbitrary precision. We show there a sector of the  phase diagram for some particular 
values of the model parameters. This numerical mcthod allows a visualization of the 
transition mechanisms which destroy the devil’s staircase scenario well outside the 
bounds determined in the previous section. 

Section 5 is devoted to the derivation of an analytical approximation, valid for 
low temperatures, which gives closed cxpressions for some quantities of interest in 
some specific applications of the model, and the last section contains a summary of 
results and some concluding remarks regarding the applications. 

2. Related models in physical systems 

In a recent series of papers, a new theoretical interpretation of charge-density wave 
(CDW) systems [4,2] has been developed in terms of bipolarons. The reader interested 
in the complete details of the theory is referred to thcse publications. We will briefly 
outline the derivation, within this theory, of the anisotropic long-range Ising model. 

The bipolaronic theory has been developed in detail for the adiabatic Holstein 
model [SI, but could be extended to many other models. We essentially assume that: 
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(i) The atoms are classical particles (adiabatic approximation), i.e. the quantum 
fluctuations of the atomic positions are assumed to be negligible with respect to the 
effective distortion of the lattice produccd by the electronic instability [9]. 

(ii) The electrons are assumed to be non-interacting fermions, i.e. Coulomb re- 
pulsion is neglected, which prevents thc possible formation of spin-density wave struc- 
tures. 

When the electronic transfer integral is set to zero, the electrons trivially localize 
at the sites of the lattice. At low tempcrature, the lattice sites either are occupied by 
pairs of electrons with opposite spins or are empty. These pairs of electrons, which 
are associated with a lattice distortion, are called bipolarons. For each site i, we 
introduce a pseudo-spin U; ,  which is equal to 1 if the site is occupied and 0 if the 
site is empty. The distribution of pseudo-spin {ut} is arbitrary and can be random 
or not. 

This theory establishes rigorously that, within the above hypothesis on the model, 
each of these bipolaronic configurations persists for a non-zero electronic transfer 
integral 1 and varies uniformly and continuously as a function of 1 for small enough 1. 
A small electronic transfer intcgral is equivalent to a large electron-phonon coupling. 
It is also proven rigorously that, for small enough t ,  the ground state of this coupled 
electron-phonon model is a bipolaronic state. More exact results concerning, for 
example, the effect of the randomness of the lattice, of the magnetic field, etc, prove 
the robustness of the bipolaronic structures under many kinds of perturbations. 

Numerical investigations in ID and 2D models confirm that, for moderately large 
electron-phonon coupling, the ground states of elcctron-phonon coupled systems 
are already incommensurate arrays of hipolarons. This is equivalent to saying that 
the corresponding incommensurate structure is ‘non-analytic’. It is claimed that this 
situation corresponds to that of all real CDWS. In addition, it has been shown for the 
ground state that the real latticc distortion { u 2 ]  is obtained by convolution of the 
quasi-periodic distribution of pseudo-spins ( vZ] by a bipolaronic shape factor { 6 , ] ,  

n 

This shape factor bi decays exponentially to zero for large lil over a finite coherence 
length E .  On increasing the electronic transfer integral or decreasing the electron- 
phonon coupling, this coherence length was found to diverge in ID models, at some 
critical parameter. This transition corrcsponds to the l l 3 ~  where the incommensurate 
CDW recovers its analyticity. 

Since the phonon branch involved in tho Holstcin model is dispersionless, the in- 
teraction between the bipolarons at large electron-phonon coupling, which has been 
estimated in [4], originates from the overlap between the electronic wavefunctions. 
This interaction, which vanishes at the anti-integrable limit, is repulsive and decays 
exponentially. For more realistic models, the fact that the phonon branch has some 
dispersion introduces extra interacting terms between the bipolarons. In order to 
realize this fact, let us consider, for example, the lollowing electron-phonon Hamil- 
tonian: 

where cf and ci are creation and annihilation fermion operators at site i of a periodic 
lattice at any dimension, ( i , j )  are neighbouring sites, U; is the (scalar) displacement 
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of an oscillator at site i (the atoms are considcrcd as classical particles), ( M i j )  = M 
is the elastic matrix of the phonons, which is translationally invariant and strictly 
positive, X is the electron-phonon coupling, p is the electronic chemical potential 
and 1 is the electronic transfer integral. 

The anti-integrable limit of this model is obtained for t = 0. Then, n; = 
c t q  commutes with the Hamiltonian and the pseudo-spin U; is (n;) = 0 or 1. 
Bipolaronic eigenstates are then easily obtained for arbitrary distributions of a; = 0 
or 1 (polaronic distributions are also available by taking some ai = i, but these cases 
are not considered in this paper; see [2] for details). At zero degrees kelvin or at low 
temperature, the phonon variable is eliminated by minimization over U;, which yields 

(2 .3~)  

This equality ( 2 3 u )  implies (2.1) with bi-, = M;;, which only depends on the 
index difference i - n. By substitution oC this expression in (2.2), one obtains the 
effective spin Hamiltonian at t h e  anti-integrable limit 

H , f f = - C L X ’ M i , : a ; a j - C ~ ~ ~ ; .  ? (2.36) 
i.3 i 

It is interesting to note that this Hamiltonian docs not dcpend on the electrons 
or any Fermi surface effect but only on the details of the phonon spectrum. When 1 
increases from zero, there still exists an effective spin Hamiltonian for the bipolaronic 
structure, and the contribution to the spin interaction d u e  to the overlaps of the 
electran wavefunctions becomes important. In real physical systems, the Coulomb 
interactions that were neglected in our theory of bipolarons should also contribute. to 
the spin interaction as a repulsive tcrm. 

As a result there are several physicdl contributions to this pseudo-spin Hamilto- 
nian, which are not explicitly calculable at the present stage of our study. Even if 
this Ising Hamiltonian werc explicitly known, its ground state would not in general be 
explicitly calculable. There probably exist many kinds or possible ground states, com- 
mensurate, incommensurate or else with ditfcrent thermal behaviour, for such king 
Hamiltonians. In any case, to understand somc qualitative aspects of the thermal be- 
haviour of bipolaronic structures, it is instructive in a first step to analyse the simplest 
king spin Hamiltonians with exactly known incommensurate ground states indepen- 
dently of their microscopic derivation. Hamiltonian (1.1) simply extends an exactly 
soluble ID model. For the sake of simplicity we only introduce nearest-neighbour 
ferromagnetic interactions transversely to the chain. This choice was not motivated 
for physical reasons, since in real systems the interaction between the chain should 
rather be chosen to be antiferromagnetic. This more complicated situation should be 
studied later. Nevertheless, model (1.1) will alrcady exhibit interesting and non-trivial 
features. 

Another relevant material situation Cor which this anisotropic long-range interact- 
ing Ising model has been claimed to be a sensible description is the transition from 
neutral to ionic, experimentally observed [IO] in some mixed stacked charge-transfer 
organic compounds as the pressure or temperaturc is varied. The idea goes back to 
Hubbard and Torrance [ll], whose argument we next summarize. These materials 
consist of stacks of alternating donor (D) and acceptor (A) organic molccules, along 
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the a direction. In the ac plane the stacks arc arranged in such a way that an A 
molecule always faces a D molecule, and so thc ac plane is a checker-board arrange- 
ment of D and A moleculcs. On the contrary, in the b direction, ... DDD ... and 
... AAA ... chains of moleculcs are formed. 

To put the problem in its simplest tcrms, let us say that the electronic state of a 
DA pair can be either homogeneous (neutral) or ionized (D'A-) depending on the 
balance between the net ionization energy and thc electrostatic Madelung energy, if 
other effects are assumed to be of much less importance. Owing to the spatial ar- 
rangement of the molecules, Coulomb interaction inside ac planes favours ionization 
of pairs, whereas along the b direction Coulomb repulsion opposes it. If the state of 
a pair is described by means of an Ising variable, one arrives at the formulation of 
a pseudo-spin Hamiltonian with ferromagnetic interaction within the ac planes and 
antiferromagnetic long-range interactions along the b axis. The net ionization energy 
term corresponds to a magnetic field. A somewhat more sophisticated model later 
proposed by Bruinsmaa el a/ 1121 does coincide in some limit with this pseudo-spin 
model; these authors studied thc pseudo-spin model at zero temperature, using a 
technique from Hubbard [13]. The inclusion in thc model o l  thermal fluctuations 
(which we have considered) could enhancc the ability of this appealing physical pic- 
ture to explain the (still growing) set ol' cxperimcntal studies of the neutral-to-ionic 
transition. 

A vely similar type of modelling philosophy earlier had led Safran [I41 to propose 
this anisotropic long-range Ising model for the understanding of staging phenomena 
in intercalation compounds. There the intcrpretation of the k ing  variable is the 
occupancy of the intercalant sites, and the physical origin of the antiferromagnetic 
long-range pseudo-spin interaction is the repulsion between intercalant layers due 
either to the elastic strain produccd by the intcrcalation in the host lattice, or to 
the possible charge donation from the intercalant atoms to the host. Within some 
(certainly restrictive) assumptions on the shapc of the minimum-enerby configurations, 
Safran [14] obtaincd some specific phase diagrams for power-law decaying long-range 
interactions, using a mean-field typc of approach (sec also Millman and Kirczenow 

In the preceding situations, the appcarancc of the pseudo-spin model is somewhat 
directly connected with some long-range interacting (idealized) objects (bipolarons, 
donor-acceptor pairs or intercalant atoms) that describe the system. It is worthwhile 
mentioning here some other situations whcre the specific models that have been 
proposed to describe them are of a different type but, nonetheless, they arc equivalent 
to the anisotropic long-range pseudo-spin model, regarding their ground states. 

Certain quasi-one-dimensional magnetic systems have been modelled [I61 by so- 
called magneto-elastic Hamiltonians, wherc clastic dcgrees of freedom (represcnting, 
for example, positions of magnetic layers) are couplcd to interacting magnetic mo- 
ments attached to the layers. This coupling appears explicitly in the Hamiltonian, 
either making the exchange interaction dependent on the intcrlayer distances, or 
making the elastic interlayer intcraction dcpendent on the magnetic moments. Al- 
though the first choice secms to have been preferred 1161, it is easily seen that both 
ways are equivalent in general. In the next section, concerning the process of dif- 
ferent transformations leading to the proof of the devil's staircase, we will show the 
equivalence between those models and the mean-field approximation to model (1.1). 

Finally, de  Gennes (171 proposed a model for the stacking of molecules in discotic 
liquid crystals, in which each molcculc has two different parts, say a plate and a 
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chain. Assuming some interaction potentials between (i) neighbouring plates, (ii) 
neighbouring chains, and (iii) plate and chain of the same molecule, one arrives at a 
model in which the  competition between the length scales determined by (i) and (ii) 
could lead to  modulated arrangements of molecules. The interaction potential (i) was 
assumed to be of Lennard-Jones type, and the model was studied in the continuum 
limit [17] as well as numerically [IS]. If the Lennard-Jones potential used in these 
references is substituted by a double well, this model turns out to be equivalent to 
the mean-field approximation to model (l.l),  as we will sec. Whether such a type of 
potential could be of use in some particular material remains an open question. 

3. The devil's staircase at finite temperature 

The anisotropic long-range king model in a magnetic field (LI) ,  at zero temperature 
and provided a convexity condition is fulfillcd (see equation (3.1) below), is equivalent 
to a Frenkel-Kontorova model with a piecewise parabolic potential [5 ] .  It has been 
shown that the variation of the modulation wavcvector, c, of the ground state with 
the magnetic field H is a complete devil's staircase (DS), i.e. (i) the curve c ( H )  is 
continuous, (ii) for each rational value of e ,  the curve <(If) is constant over a finite 
interval of width AH,  and (iii) the sum over all rationals of the widths of these 
intervals is equal to the total variation in I1 (complctcness). The convexity condition 
mentioned above is 

I i (n )  = J ( n  + 1) + J( n - 1 )  - 2 J ( n )  > 0 (3.1) 

for all n(ln1 2 2); this is a suficicnt condition for the existence of the devil's 
staircase. The width of the plateaux of the 11s for rational commensurabilities 5 = r/s 
(P and s are irreducible integers) is proportional to Er=, p s K ( p s ) ,  which is positive. 
If the range of the interaction is truncated beyond a h i t e  Oistance no ( J ( n )  = 0 
for In1 no), the devil's staircase E (  If) becomes a harmless staircase with only a 
finite number of plateaux corresponding to commensurabilities with s 4 no and thus 
shows a finite number of jump discontinuities (although they can be rather small if 
no is large). 

Although there have been some speculations on what happens at finite tempera- 
ture (sec for example Bak and Bruinsmaa [ 5 ] ) ,  no answer has yet been given on the 
effect of thermal fluctuations on the devil's staircase in 3D models. We will address 
this question here for the model (1.1) within a particular mean-field approach. This 
type of approximation has been confirmed to give correct qualitative results in models 
like the 3D ANNNl model [19] for a wide range of temperatures, and we do not expect 
a breakdown here. The derivation of the mean-field free cnergy corresponding to 
(1.1) closely follows the one for the 3D ANNNI model (see for example [ZO]) and the 
result is 

where mi (-1 4 mi 4 1) is the thermal average magnetization per spin in layer i 
and the mean-field potential V(mi) ,  given by 

I/(m)=-Jm'+~k,T[(l+m) l l l ( 1 + J ? l ) + ( 1 - ? l Z )  Il l ( l -nZ)]  (3.3) 
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is a symmetric double well (see figure l((1)) below the paramagnetic transition tem- 
perature Ic,T = 2 5 .  The constant J is related to the J in (1.1) by J = 45. 
Moreover we assume the explicit form J ( n )  = Dl$nl ( 0  < 1)  < 1) of equation 
(2.2) for the long-range interaction constant J (  n), which straightfonvardly satisfies 
mnvexity condition (3.1). 

We prove rigorously for 1 )  sufficiently small ( q  < $) that the devil's staircase 
behaviour, which occurs as a function of the magnetic lield I / ,  is preserved in model 
(3.2) at low but non-zero temperature. Although our method of proof fails when 
q becomes close to 1, this does not mean that the DS does not survive at low 
temperature. Although a numerical invcstigation, which necessarily has a limited 
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accuracy, is not sufficient for proving such a conjccture when rl becomes close to 1, 
our numerical analysis does not appear clearly in contradiction with this assumption. 

The arguments used for this proof essentially consist of a series of equivalences 
between different models regarding their ground states. When q < i, we end in 
an equivalent Frenkel-Kontorova (FK) type of model with (non-parabolic) convex 
interactions, where the devil's staircase behaviour is wcll known to occur. 

In appendix 1, we prove the equivalence, regarding the ground-state problem, 
between the model (3.2) and the lollowing models (see section 2). 

3.1. Model (A): de Gennes model 

In this model 

This model yields model (3.2) by setting - ui = m; and minimizing over {w;}. 
The potentials and the  consfants involved in this modcl are related to those of t h e  
initial model (3.2) by 

u(m) = \/(ni) - $Din' (3.5) 

A = D(l +?]) / ( I  - q) (3.6) 

Ab= H .  (3.7) 

C = O(1 - $)/q 

3.2. Model (E): niagrtelo-clastic niodel 

Here 

~ ( { m ~ } , { y ~ } )  = x T y : + T ( y i t I  - - y ; + w i ) ' -  11n7.;+-b?+i/(ni;)  2 
c .-I A 

i -  

C A 7 ~ :  + ,(yi+l - vi - b + .I;)' + U ( t n ; )  - H(Y;+, - Y;). (3.8) = - 
i -  

This model also yields model (3.2) by minimizing over {vi}. Models (A) and (B) are 
directly related by setting vi  - ui = 21; and uit, - ui = mi. 

The long-range interactions between thc { ' m i }  of the initial model (3.2) have 
been eliminated in both models (A) and (B) hy introducing a local coupling with 
an additional harmonic field { t i i }  or {yi}, which only involves nearest-neighbour 
interactions. Since yi is necessarily bounded, the term xi H(yitI - yi) = H(y, - 
yo) in (3.8) is a microscopic term. For an infinite system, it does not play any role in 
the ground-state determination and can be dropped in (3.8). 

By minimizing the variational form (3.8) with rcspect to {mi}, we obtain another 
equivalent model with only one variable per uni t  cell. 



5930 

3.3. Model (C): model wilh non-conim interactions 

L M Floria el al 

In this model 

(3.9) 

where the symmetric potential W is defined through the following minimization: 

W ( t )  = m i n [ U ( r ) +  $ A ( + +  i)'] (-1 < + < 1 ) .  (3.1 Oa) = 
Then {mi) is related to {yi} by 

U ' ( m ; )  + 4 7 n ;  + (Yi+] - Yi - b ) )  = 0.  (3.106) 

Model (C) corresponds to a chain of particles in harmonic potentials, where y; 
is the displacement of particlc i from its equilibrium position, which are coupled 
by an anharmonic interaction potential that depcnds on the interparticle distance, 

Let us examine in more detail the propertics of W ( t ) .  Using + as a parame- 
ter, the function W ( t )  is the lower envelope of the possibly multivalued curve f? 
parametrized by the equations 

Yi+1 - Y, - b. 

t( +) = -=-( 1 /A)U' (  +) = -2- ( 1  /:4){-(2J+ D ) s +  i k ~ T  ]I>[( 1 + +)/( 1 -z)]) 
(3.1 la) 

w(+) = u ( t ) + [ i / ( 2 ~ ) ] ~ ' ( s j ' .  (3.11b) 

It is easily found by differentiation that 

d W / d t  = - U ' ( r )  ( 3 . 1 2 ~ )  

dZIV/dt' = d(dIV/dt ) /d t  = A U " ( z ) / [ A  + U"(s ) ]  (3 .12)  

which implies that W ( I )  and U(.) arc both symmetric double well (k,T < ? J + D )  
or symmetric single well (k,T > 2 5  + D ) .  \V( I )  and U ( + )  have the same minima 
M/(z0(T)) = U ( z 0 ( T ) )  at the lowtion I = --:c = x 0 ( T ) ,  which fulfils 

% ( 2 5  + O)zo = kI3T l i t [ (  I + ro)/( 1 - so)]. (3 .12)  

However, when M'(i) is a double wcII, thcrc are two possible situations depending 
on whether i ( r )  = -+ - ( l /A)U' (+)  is a monotonically decreasing function of I 
or not. When U"(0) + A is ncgative, that is whcn 

0 < 25 + D - A 

k , T < 2 5 +  0 - A  

( 3 . 1 3 ~ )  

(3.136) 

the curve f? has two symmetric cusps and a knot (cf. figure l(6)) so that the lower 
envelop. W(1) has a cusp at 1 = D corresponding to the knot. Conversely, when 
U"(0) + A is positive, IY(1) is smooth with no cusp and knot (cf. figure l(c)). 

It iS then useful to define the anisotropy pardmctcr 

a = J/[D7]/(1 - ? I ) ]  = J(l - ?))//3?] (3.134 



Anisotropic 3D long-range Ising nrodef in a field 5931 

as the ratio of the total interchain coupling J and of the total intrachain coupling 
C,,oJ(n). Then W ( t )  has a cusp when two conditions are fulfilled: (i) the 
anisotropy parameter a is larger than 1; (ii) the tempcrature is small enough, that is 

l t , T < Z J - Z D q / ( l - - r 1 )  = 2 J ( l . - l / a ) .  (3.14) 

Let us consider now another type of model. 

3.4. Model (D): Sasaki-Griflths nrodel 

Sasaki and Griffiths [21] noted that a particular class of models with the form (3.9) 
can be exactly transformed into FK models. This situation is obtained when potential 
W ( t )  can be written exactly as 

W ( t )  = min{Wo(t), W0(l+A)}  (3.1%) 

where W o ( t )  is a strictly convex function with a minimum between 0 and A. Then, 
introducing new pseudo-spin variables ui = 0 or 1, the ground state {vi} of the 
variational form (3.9) is given by minimization of the variational form 

@ ( { y ; ] ) = ~ m i n  - g i - b + u i A )  . 0 ;  

By setting 

(3.16~1) 

where Mi = U,, is an intcxer, this form becomes 

*({q}) = CVFK(2) t W " ( Z i + ,  - Ji - b ) .  (3.16b) 

By dropping the condition ui = A4it, - M ;  = 0 or 1 and considering {Mi) as 
arbitrary integers, this model is nothing else than a Frcnkcl-Kontorova model with a 
piecewise parabolic potential 

i 

with period 4 and a convex potential WO coupling the nearest-neighbour atoms. The 
exact ground state of this FK model (3.16) is obtained for Mi = int(iC + a) where 
a is an arbitrary phase and 0 Q C < 1 since TV0(z) has a minimum between 0 and 
A. Therefore, the condition ui = Adi+, - M, = 0 or 1 is automatically fulfilled by 
the ground state {q} of the FK model, which thus corresponds to the ground state of 
model (3.15). There exists a hull function f( s) = T + g(x) where g(x) is 1-periodic 
such that zi = f(iC+ a )  and yi = zi + Ah.I(r;/A) where M ( r )  = i n t ( z  + i) is 
the closest integer to z. 

Although the double-well potential defined by (3 .10~)  does not have the form 
(3.15~) (except at zero degrees kelvin), in some cases, it can be replaced equivalently 
by another double-well potential with the form (3.150). 
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Figure 2. Sketch of the construction of polential 
I \ ' ( / )  lrom potential N'(1).  

3.5. Model (C'): imriulion of model (C) with the form (D) 
Let us consider the symmetric potcntia~s C ( . P )  2nd \ii(t) defined as (see figure Z) 

U ( r )  = U(+) 
GiJ(t) = ~ ( t )  

for 1x1 < +,(T) 
for 111 < z O ( T )  

ir( Z) = u( + - 2z,( T ) )  for s > E,( T )  

ti,'(?) = i i / ( t  - ~ T , ( T ) )  

U ( Z )  = ~ ( z  + 2s , (T) )  

+ ( t )  = ~ ( t  + ~ z , ( T ) )  

f o r  t > +,(T)  

for ,Y < -so(?') 

for t < - so (T) .  

These definitions of dT potentials just correspond to replacing one part of the potential 
X by a translation of the remaining part (SCC ligure 2). I t  is readily proven (as 
suggested by figure 2) that 

+(2)  < W ( t )  (3.17~) 

and 

O ( z )  < U(z). (3.17b) 

Defining Ivo(t) = W i t )  for t > 0, \if.( 1 )  can bc written as 

14'(t) = n~iii(W,(t),Gi/,(t + A)) (3 .18~)  

with 

A = 3s,(T). (3.1%) 
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Models (A) and (B) where potential U ( . r )  is replaced by potential O(z) are 
called models (A‘) and (B’) respectively. Modcl (C’) is obtained from model (C) by 
replacing W(1)  by W ( t )  since 

r ; t ( t )  = min[O(z)  + $ A ( z +  t ) ? ]  (-1 < z < I) .  

Models (A‘), (B‘) and (C) are equivalent with exactly the same arguments as for 
models (A), (B) and (C). They also are equivalcnt to model (3.2)’ where potential 
(3.3) is replaced by c(m) = U ( m )  + kDnt2. In  the same range of temperature as 
for model (C), the ground state of mo&l (C‘) only ’visits’ the convex part of \@(t). 
Consequently model (C’) with variational form 

@({yi}) = c i n i i i  . “ 3  (Cy; 2 + Wo(yi+, - y; - 6 +  u i A ) )  (3.19) 

has the form of model (D) required by Sasaki and Grilliths. When the minimum, 
x , ( T ) ,  of e0(1) is such that the corresponding value of zi+, - zi in model (3.16), 
zo(T)  + 6, satisfies 

0 < zo (T)  + 6 < h = 2 x O ( T )  

or 

(3.20) 

the exact results known about the FK model apply and the ground state (zi} of model 
(3.16) is an incommensurate structure: there exists 0 < C < 1 and a phase 0 < a < 1 
such that 

(3.21a) 

On the other hand, when H / A  > z,(T),  it is straightfoward to show that 
y; 0 in (3.15) yields the ground state. Then, (3.21a) holds 
with C = 0. A similar result holds when I I / A  < -ro(T), which yields C = 1 in 
(3.21a). 

Thus, in all cases we have for the corresponding ground states of models (A‘), 
(B’) and (C) 

Mi = int(iC + a). 

0, Mi E 0 and U; 

U; = in t ( ( i  + l)C + CY) - int(iC + CY) = s(i< + a )  (3.21b) 

where 

x ( z ) = i n t ( z + C ) - i n t ( z )  (3.21~) 

is the characteristic function, which is 0 or 1 and periodic with period 1. 
and T small enough, the ground states of 

models (3.2) with potential V ( m )  and i / ( m )  = b ( m )  + :Dni? are identical. Since 
the second model is equivalent to a Frcnkel-Kontorom model, the ground states of 
the initial model are commensurate or incommensurate, and the wavevector of the 
modulation depends on the magnetic field f.1 as a complete devil’s staircase. 

For VJ close to 1, the method used in appendiw 3 for proving the persistence of a 
DS at low temperature does not work. This is due to the fact that for the ground state 

In appendix 3, we prove that, for 7) < 
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{mi} of model (3.2), there exists jm,[ such that [RL,~ > z,,(T). Thus models (A), 
(B) and (C) are not necessarily equivalent to models (A‘), (B‘) and (C‘) respectively. 

Nevertheless, our numerical results suggest that the devil’s staircase scenario re- 
mains valid or at least is a good approximation [or any 71 when the temperature is low 
enough. In the following scctions we use two different techniques for obtaining the 
phase diagram. The first numerical method is exact in principle, but requires longer 
computations for a high accuracy. It confirms this assertion within the numerical 
errors. The second method is analytic, but based on an approximation of W ( t )  by a 
piecewise parabolic potential. It yields explicitly a phase diagram that is in agreement 
at low temperature with those obtained by the first mcthod. 

L M Flodu CI a/ 

4. The minimization eigenvalue method 

In the previous section we have proved that the ground states of the original pseudo- 
spin model (3.2) map exactly those of modcl (C): 

Q((y;)) = x(C/? )y :  + li’(yi+l - yi - 6). (4.1) 
i 

This one can be considercd as a displacement model by considering variable yi as 
the displacement from the equilibrium position of the i th  particle of a chain. The 
interparticle interactions in this chain are nearest-ncighbour and double-well shaped 
(see figure 1). 

As we have already noted, it is much easier to compute the phase diagram with 
model (C) than with the initial modcl, which involves long-range intcractions. For ID 
models with short-range interactions like (C), elficicnt numerical techniques extending 
the transfer matrix method at zero degrees havc been developed. The method, called 
the effective potential method, or minimization eigenvalue method, is described in 
great detail in thc recent review by Grilliths [7]. 

This method applied to modcl (C) consists of finding a scalar X and a function 
R(y)  that fulfil the following functional cquation: 

R(y)  + X = (C/2)y? + irii,ii[i,l’( y -  y‘- 6) + R(y’)]. ( 4 4  
Y 

For each value of y, y’ = r( y) is defined as the value y’ where the minimum in (4.2) 
occurs. The attractor of this (contractivc) map is a ground state of the model, and 
X turns out to be the ground-state energy per atom. Formally (4.2) is the continuum 
version of the eigenvalue problem in minimax algebras 1221, X being the (unique) 
additive eigenvalue and R(y) the corresponding additive right-eigenfunction. 

R(y)  can be interpretcd as the effective potential, which acts on the last particle 
(with coordinate y) of a semi-infinite chain extending to the right-hand side, when 
assuming that all the other particles arc relaxed in the arrangement with the lowest 
energy. One can define identically an cffectivc potential S(y) for a semi-infinite 
chain extending to the left-hand side, which fulfils 

S(y) + X = (C/2)y: + mi,n[S(y‘) + M’(y‘- y -b ) ] .  (4.3) 
Y 

With both (right- and left-) eigenfunctions, the effective potential F(y) that acts 
on a particle of a fully infinite chain, when all thc other particles on both sides are 
relaxed in their configuration with the smallest energy, is 

F(y) =R(y)+S(y ) - (C /2 )y ! .  (4.4) 
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shown next, this effective potential F(y) gives detailed information about the 
ground-state properties and its low-cncrgy cxcitdtions. 

Equation (4.2) is solved by numerical proccdures assuming that y belongs to a 
grid of N points on the interval - Y , , , ~ ~  < y 6 y,,,,. The maximum value ymav 
is chosen for each set of parameters in order that, for the ground state, yi surely 
belongs to that interval. The number N of points in the grid can be as large as the 
computer capabilities and/or precision requirements suggest. We have used N = 500 
in most cases. The interparticle potential W(y- y ' - b )  defined implicitly by equation 
(3.10) is preliminarily calculated Cor y and y' belonging to the chosen grid. 

The discretized minimization eigenvalue equation is solved by using the algorithm 
of minimizing cycle, explained in 1231. The algorithm yields the exact solution of the 
discrete eigenvalue problem in a finite timc (roughly proportional to N ' ) .  Therefore, 
the accuracy of the result is essentially determined by the pitch of the grid used for y. 

Figure 3. P h a r  diagram in tlie 7 ' - I i  plnnc (tor 11 = 1. 71 = 0.8. 3 = 0.5). obtained 
by the method 01 elkctivc potentiills Only the widest phases are sl~own, labelled by 
wavevector C. Although lhcsc v a l ~ c s  01 Llie parnnicters lie well beyond the rigorous 
bounds we found, a devil's staircase seenis to exist here up to T 2 O.GT,.  The phase 
labelled V4, which can be sccn at high temperalurc, his period 4, but wavevector 1R. 
We follow the noLalion of [16, 241 in order to distinguish this phase from the 'normal' 
1iZ phase. 

Figure 3 shows the phase diagram versus N and T for J = i, D = 1 and 
r~ = 0.8 (the anisotropy parameter (3.13) is ii = b). Modulated phases do appear in 
the region of the H-T plane defined by 

k B T  < kBTMF = 25+ 20?7/(1 + ? I )  
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(the paramagnetic transition temperature at H = 0) 

and 

H < H, = 2Dq/(1- q) 

(the homogeneous-to-modulated transition field at T = 0). 

At zero temperature, agreement with the exact result [5] is obtained, which tests 
.the quality of the numerical codes. At low temperatures, the width of the stability 
domain of each modulated phase changes v e v  little. Although q > i, the DS seems 
to persist at low temperature. 

Figure 4. Example of a typical change in F ( y )  
potential when a CYIC transition is approached. For 
these L)ictures, TIT, = 0.529412, D = 1.0. n = 

Y 

Some examples of effective potentials F( y) are shown in figure 4. Function F ( y )  
exhibits absolute minima for the values yi belonging to a ground-state configuration. 
It also exhibits local minima corresponding to the metastable configurations {yi}, 
which are called discommensurations. The difference A F  between these minima and 
the absolute minima is thc energy of the discommensuration, i.e. the cost of creating 
such an excitation. A commensurate-incommcnsur~tc (c-IC) transition occurs when 
the discommensuration energy A F vanishcs; an example of this situation is shown in 
the sequence of figure 4. This behaviour, which is characteristic of a devil's staircase, 
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ri‘ipure S. Examplc oi a lypical change in F ( y )  
polenliai whcn a firs!-onler lransilion I aka  place. 
TIT, = 0.941 294, D = 1.0, 9 = 0.8, and in 
(a) t l / t lc = 0 .Z l i .  (6) H/Hc = 0.217 125 and 
(c)  H I H ,  = 0.21725. 

is numerically obsewed over a wide range of tcmpcraturcs. It suggests that the DS 
suwives in fact to rather ldrgc temperature. 

By contrast, for larger temperatures the behaviour of F( U) becomes quite differ- 
ent. As shown in figure 5, first-order phase transitions (i.e. discontinuous change of 
both the ground-state positions and the modulation wavevector) can take place before 
the discommensuration energy vanishes, which proves that the DS disappears at least 
partially. Other interesting features can be observcd such as, for example, second- 
order phase transitions corresponding to a period doubling. Then, the modulation 
wavevector of a commensurate ground state changes discontinuously and is divided 
by 2, Le. the unit cell doubles, while the particle positions change continuously. 

However, it is well known that the mean-field approximation becomes unreliable 
at larger temperature where one approaches the critical line at the border of the 
homogeneous (paramagnetic) region. Therefore, the existence of first-order transi- 
tions and of perioddoubling transitions remains questionable for the initial model 

We should mention here the resemblance of this phase diagram (figure 3) with that 
of the model studied by Marchand and CaillC [16], which should be clearly understood 
after consideration of section 3. Also, many features of this phase diagram are shared 
by the one of the X Y  chiral model studied by Yokoi el U /  [24]. Moreover, as this 

(1.1). 
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I 

, , , .  . 
>A!',,,,,:, I 

Figure'6. rliascdtagrdm in rhe T-H plane for the 
samc values oi parameters as in hgurc 3 (D = 1, 
T) = 0.8, J =,,0.5), obtained by the parabolic 
approximarion oi,,potential IV(t )  a1 low enough 
tcmpcrature ' ~ h c  r S i i s "  ire quite in agrpement 
with 11mc of stirion 4, and the quantitative values 
are available up to 7' E 0.4Tc. 

paper was completed, we became aware of a recent work by Ishimura [25], in which 
the phase diagram for this model has been obtained by means of a 'brute force' 
numerical procedure, without saying clearly if the dcvil's staircase suwives or not at 
low enough temperature. 

.1 .0.5 0 0.5 1 

Magnetlc Fleld H 

Figure 7. Phase diagram at fixed trinpeciture in the (2-H plane, where Q is the 
wavwector. obtained with the p:mbalic approximation of potential M'( I). The devil's 
staircase is plotted for three dillrretit Y ~ ~ U U S  oi T, and for D = 1, J = 0.5, T) = 0.3. 

5. Lowtemperature analytical approximation 

In this section, we assume that the temperature is low enough in order that the 
ground state of model (3.9) only visits the convex part of the double-well potential 
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W ( t ) .  Then this double well can be approximated reasonably wcll by a piecewise 
parabolic potential, allowing an explicit calculation of the phase diagram versus T 
and H. 
We replace W ( t )  in (3.9) by the parabolic approximation: 

W ( t )  N min [;~"(x,)(t - r,)?. $W'(r,)(t + r,)?] + W ( x o ) .  (5.1) 

The constant term W(s,)  does not play any role in the determination of the phase 
diagram, and can be dropped, as we shall do in the following. The values fx, = 
fx,(T) are the two minima of the potential U(r) (with -1 < I < +l). W(1) can 
be written as 
W ( t ) ~ m ~ n { $ W " ( x , ) [ l -  $ A ( T ) + A ( T ) u ] ? }  whcre U = 0 or +1. (5.2) 

Now, we are interested in the evaluation of I / (  yitl - yi - b) in model (3.9). At this 
point, we introduce the new variablcs {zi) and {U;), as defined in (3.16) 

(5.3) 

and W(yic, - yi - b) becomes 

W(yit1 - yi - 6 )  U niin { hM'"(r ,)[gitl - y j - 6 - ~ A ( ~ ) + A ( T ) u , ] ? ~  
0 ,  - 

= mill { ~ W " ( z 0 ) [ z i + ,  - :; - 6- A(7')a,  - $A(T) + A(T)a;]?) 
0 ,  - 

= $W"(x,)[zitl - z i - 6 -  $A(T) ] ' .  (5.4) 

Following this transformation, the first part of model (3.11) is also changed and 
becomes 

$Cy: = iC[z ;  - A(T)A./;]?. (5.5) 
i 

The model (3.11) thus becomes with respect to the new variables: 

with 

X(T) = C / W " ( x , ) .  (5.7) 
The model (5.6) is a piecewise parabolic Frenkel-Kontorova modcl, which is exactly 
solvable [5]. These models ctepcnd on thc tcmpcraturc T (through the value of 
to( T)). %king the analytical result in IS], wc obtain lor the ground state 

Mi = int(iC(T) f a )  (5 .W 

B f T )  = A(T)X(T)/[ ' IX(T)+ X(T)~]*" (5.k) 

T(T) = 1 + iX(T)  - f[4X(7') + X(T)?]"? ( 5 . W  
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where i n t ( z )  denotes the integer part of x ,  ct is the phase of the ground state, and 
C(T) is the wavevector of modulation, which is the same, by successive equivalences, 
as the wavevector of the models (A), (B) and (C). 

L M FIoria et al 

The magnetic field is connected to the wavevector by 

(5.9) 

Using function r ( T )  instead of X(T) = [l - r(T)]'/r(T), the magnetic field 
becomes as a function of T and C: 

(5.10) 

The notation in t*(z)  denotes the two possible dcfinitions of the integer part for I 
integer (i.e. i n t+ (n )  = n, and i n t - ( r ~ )  = n -  1 lor 77 integer, and in t*( r )  = i n t ( z )  
for I non-integer). This induces discontinuitics for each rational value of C(T) = r / s  
(T and s being irreducible integers). At 7' fixed, !/( T, C) is invertihlc, and the inverse 
function C(T, H )  is a continuous function, known as the complete devil's staircase. 
For T = 0, we have Ttzo = il, lV''(&I) = A, and as a consequence r ( 0 )  = q. 
Thus the formula (5.10) gives 

which yields the variation C( H )  of the initial model at T = 0. We can expand r ( T )  
at low temperature, using the fact that for i 0 ( T )  = 1 - eo(T),  E J T )  < 1. In that 
case, we obtain 

U'[1 - co(T)] = 0 z -2.10 f fk~jTlOg[a/€~(T)] (5.1%) 

co(T)  z 2 e x p ( - 4 J o / k B T )  (5.126) 

with Jo = J + D / 2 .  Following the samc approximation lor 12"'(to) and r (T ) ,  we 
obtain 

X(T) z ( C / A ) [ l  + ( 2 A / k B T ) r , ( T ) ]  (5.13) 

r ( T )  = q [ 1  -(2D/kBT)co(T)]. (5.14) 

By substitution of the value of (5.W) in (%IO), we can draw the DS at finite 
temperature T (see figure 6) and the phasc diagram lor Some values of parameters 
q, D and J as shown in figure 7. At low enough tcmpcraturc, this last figure is in 
quite good agreement with the figure obtaincd lor the same parameters in section 4. 
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6. Conclusions 

In summary, concerning the physical results obtained in this paper for a particular 
mean-field model: 

(i) We have shown (and proven rigorously under extra conditions) that the com- 
plete devil's staircase that exists at zero temperature pcrsists at non-zero temperature. 

(ii) We have also shown that the tempcrature has an effect on the  width of the 
tongues this is reduced except that corrcsponding to commensurability $. 

Concerning the mathematical methods uscd in this papcr, which could find appli- 
cations for other modcls: 

(i) We have established an equivalence regarding the ground state between models 
with long-range interactions and modcls with short-range intcractions. The trick con- 
sists of the introduction of an extra discrctc licld of variablcs {vi], which 'transport' 
the interaction at long distance. 

(ii) By elimination of the initial field of variables { n t i ] ,  we have shown under 
some conditions that the model becomes equivalent to a Frcnkel-Kontorova model. 

For finding explicitly the phasc diagram with a good accuracy, we performed two 
approaches, which are in good qualitative agrccmcnt with one another (in the low- 
temperature regime). The first onc is the minimidation eigenvalue method, which is 
in principle exact, but with an accuracy that dcpends numerically on the pitch of a 
grid. The second method uses thc approximation of potentials by piecewise parabolic 
functions, which yields analytic calculations and remarkahly accurdte results at low 
temperature. 

The 3D model studied in this paper consists of incommensurate chains coupled 
ferromagnetically. In a short forthcoming papcr, it will be shown that, when fixing 
the magnetization of the model (which corresponds to fvting the number of electrons 
if this model is used for a bipolaronic chargc-density wave), we necessarily have a 
significant variation of the wavevector of the modulation as a function of temperature. 
This variation is thermally activated and, although it  has the wrong sign, it exhibits 
unusual locking effects at simple commcnsurabilities and striking similarities with 
unexplained features observed on real CI~WS. However, lor describing more precisely 
real cDWS, an antiferromagnetic coupling bctwecn the chains would be more realistic 
and could give results in better agrecmcnt with experiments. The method used here 
cannot be used identically for solving this modilied model. Modilied methods are 
under study. 
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Appendix 1. 

Minimization of (3.8) with respect to {yi} gives, for all 11, 

L M Floriu et ltl 

A ( ~ E , - ~ ~ , _ ~ ) + ( C + ~ A ) Y , , - A ( Y , + ~  + y n - 1 ) = 0 .  (Al.1) 

These equations can be solved using a Fourier transform: 

u, = Cu(q) exp(- iqn)  y,, = Cy(q) e x p ( - i q n )  ( ~ 1 . 2 )  
9 9 

which yields 

y ( q )  = u A ( l - e ' q ) / { C + 2 r 1 [ 1 - c o s ( q ) l } D m ( q ) .  (A1.3) 

By substitution of y(q)  into the variational form (3.8), one obtains 

+ +Dii i ;  (A1.4) 

which establishes the equivalence bctwccn modcl (B) and the original model (3.2). 

Appendix 2. 

We prove that, for low enough tcmperature, the set of valucs taken by t i  = yitl - 
y i  - b for the  ground state of model (3.9) lic in the convex part of the potential 
W ( t ) ,  i.e. W"(t i )  > 0 for all i. 

Proof. The derivatives of V ( x )  are I''(.r) = -2Jr + $k,T 111[(1 + r ) / ( I  - s)] 
and V"(r) = -25 -t IzBT/(l - x?). Since for r > 0, V"(z) is 3 monotonically 
increasing function that diverges for 2 - + I ,  the symmetric potential V ( s )  is a 
double well when V"(0) < 0, that is far 

kBT < 25. (A24 
Then, V ( t )  has two minima at x = A x , ( T ) ,  such that V'(z,) = 0 and V"(x,) > 0, 
which implies V"(s) 2 V"(r l )  =~I.'"(-x,) > 0 for 121 t,(T). It is more 
convenient to consider 0 < z l  < 1 as thc variablc instead of T.  Thcn, we have 

kBT(xl)  = 4 J s l / t n [ ( l  + .r l ) / ( l  - rl)]. ( A 2 4  

For the ground-state configuration { ? i t i } ,  the variational form (3.2) is an absolute 
minimum with respect to each mi. The part of (3.2) that only clepencts on mi has 
the form V ( m i )  - h i n ~ i  with 

which yields 

V'(n1:) = hi. 
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Since V(z) is a symmetric double wcll, ? i i I  has the sign of ha and 

Im,lZ z , ( T )  W . 5 )  

V"(mc)  2 Y"(s,) > 0 .  ('42.6) 

U " ( m ; )  = Y"(m;) - D 2 U " ( z , )  = V"(zl) - 0. W . 7 )  

which implies 

We now consider U ( z )  = Y ( z )  - ( D / 2 ) z 2 .  Thus we have 

We obtain 

U"(zl) = - ( 2 5  + D )  + k u T l / ( l  - z?) 

= - ( 2 J +  D)+[45+, / (1  - z ~ ) ] l / l n [ ( l  + z l ) / ( l  -.,)I. (A2.8) 
Condition U " ( z , )  > 0 isequivalent to /?(.cl) = ~ I J + , - ( ~ J + D ) ( ~ - ~ ~ ) I I I [ ( ~ +  

&,) / ( l  - zl)] > 0. It is easy to check that F " ( s l )  > 0 for 0 < z <- 1,  which 
implies that F ( z , )  is convex. Since F ( 0 )  = 0, F' (0 )  = - 2 0  < 0, F(1) = 
4 5  > 0, ttie set of positive U"(zl) is a uniquc interval ]zl,,l[. Consequently 
for T < T,,, = T(zl,,J, any ground-state configuration { m i ]  of model (3.2) fulfils 
U " ( m ; )  2 U"(zl)  > 0 and thus only visits the convex part or U(z). 

The ground-state cOnfiguration'{Ui) ol  modcl (3.9) is related to {mi} through 
the equality 

U ' ( m ; )  + A(nii  + ti) = 0 

ti = y;+, - gi - b 

('42.9) 

(A2.10) 

with 

and (3.12b) yields 

W"(t i )  = A U " ( m i ) / [ A  + U"(m;) ]  > 0 

which proves that, at low enough temperature, the ground state {gi} of model (C) 
only visits the convex part of potential I.V(yi+, - vi - b). 

Appendix 3. 

We prove that, for 11 < $ and for low enough temperature, the ground states of 
models (3.2) with potential V ( m )  and v ( m )  = ii(771) + $Dm? are identical. 

Proof: The proof is obtained by showing that wc have 6 zo (T)  for the ground 
state {mi} of model (3.2) with potential v ( m ) .  Then, we have for all i, v(mi) = 
V(mi) .  Because of the inequalities (3.17). which imply i'(nz) < V ( m ) ,  the ground 
states of model (3.2) with potential V ( m )  and C / ( m )  are the same. 

Let us consider model (3.2) with potential f'(772). Since this model is equivalent 
to a FK model, the ground state {vi i )  is described hy a 1-periodic hull function m(+) 
as 

mi = na(iC + a). (A3.1) 
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T h e  sign of m, is determined by the equality 

L M Flolfu er a1 

sgn(n2,) = 1 - ?Ur (A34 
where U; = x(iC + a) is defined by the hull function (3.216). Consequently, we can 
write 

4.) = 11 - 2x(z)1:[1 + r,(T)I[l + 4z)I 

I€(I)I < 11 - Il(T)l/[l + II(T)l. 

(A3.3) 

(-43.4) 

where the hull function c(  z )  fulfils, because of (A2.5). 

The  local field h, = h( iC + a) delincd by ( A 2 3 )  can also be written with a hull 
function h( z) defined as 

h ( r )  = H -  C J ( n ) n z ( r +  nC) = [ 1 +  r1(7)] CJ(rL)S("t 7.C) 

n#O *'#O 

- i n t ( z  - n ~ ) l -  n i in [ in t ( r  + (71 + I ) < )  - i n t ( z  - n ~ ) ] )  . (~3.7) 

Function [ i n t ( z +  ( 1 2 +  l )< ) - in t (z -nC) ]  is I-periodicwith two discontinuities 
with amplitudes 1 and -1 per period. Thus, 

m a x [ i n t ( z + ( n +  ~ ) < ) - i n t ( + - n ~ ) ] -  miii[int(z+(n + l ) C )  - i n t ( z  -nC)] = 1 
z s 

W.8) 
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which implies 

O<m:x+(r)- lnin+(s)  I < J ( l ) + C [ J ( , . l ) - J ( n + l ) ] = 2 5 ( 1 ) = 2 D 7 1 .  
M 

n = l  

('43.9) 

Consequently, using (A3.5) we have 

0 < m:xh(z) - min h ( z )  < 2[1- . ~ ~ ( T ) ] D 7 l / ( l -  7 1 )  +2 [1+  . T ~ ( T ) ] D ~  = ~(7'). 
I 

(A3.10) 

Since for an incommensurate structure h( z )  takes both positive and negative values 
(see appendix 2), the right-hand side p ( T )  of (A3.10) is an upper bound for the local 
field hi. For T going to zero, z , (T)  goes to 1 and this uppcr bound goes to 4011. 
Nok that p(T) is an increasing function of T. Whcn 4 D ~ j  < D, that is for < $, 
there exists T,,, such that for ?' < To, we have for all i, /L% 6 p ( T )  < D. Then 
comparing (A2.4). V'(ni , )  = / I , ,  and thc equation \"(ro(T))  = Dzo(T) ,  it mmes 
out that for all i we have 1niz1 < ~ ~ ( 7 ' ) .  
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